Aidelsburger, M., Nascimbene, S. & Goldman, N. Synthetic gauge fields in supplies and engineered programs. C. R. Phys. 19, 394–432 (2018).
J. Dalibard, Introduction to the physics of synthetic gauge fields. Preprint at https://arxiv.org/abs/1504.05520 (2015).
Goldman, N., Budich, J. C. & Zoller, P. Topological quantum matter with ultracold gases in optical lattices. Nat. Phys. 12, 639–645 (2016).
Goldman, N., Juzeliunas, G., Öhberg, P. & Spielman, I. B. Gentle-induced gauge fields for ultracold atoms. Rep. Prog. Phys. 77, 126401 (2014).
Lu, L., Joannopoulos, J. D. & Soljacic, M. Topological photonics. Nat. Photon. 8, 821–829 (2014).
Hafezi, M. Artificial gauge fields with photons. Int. J. Mod. Phys. B 28, 1441002 (2014).
Ozawa, T. et al. Topological photonics. Rev. Mod. Phys. 91, 015006 (2019).
Vozmediano, M. A., Katsnelson, M. & Guinea, F. Gauge fields in graphene. Phys. Rep. 496, 109–148 (2010).
Ren, Y., Qiao, Z. & Niu, Q. Topological phases in two-dimensional supplies: a evaluate. Rep. Prog. Phys. 79, 066501 (2016).
Huber, S. D. Topological mechanics. Nat. Phys. 12, 621–623 (2016).
Gao, T. et al. Commentary of non-Hermitian degeneracies in a chaotic exciton–polariton billiard. Nature 526, 554–558 (2015).
Estrecho, E. et al. Visualising Berry part and diabolical factors in a quantum exciton–polariton billiard. Sci. Rep. 6, 37653 (2016).
Lim, H.-T., Togan, E., Kroner, M., Miguel-Sanchez, J. & Imamoglu, A. Electrically tunable synthetic gauge potential for polaritons. Nat. Commun. 8, 14540 (2017).
Berry, M. V. Quantal part components accompanying adiabatic modifications. Proc. R. Soc. Lond. A 392, 45–57 (1984).
Gianfrate, A. et al. Measurement of the quantum geometric tensor and of the anomalous Corridor drift. Nature 578, 381–385 (2020).
Raghu, S. & Haldane, F. D. Analogs of quantum-Corridor-effect edge states in photonic crystals. Phys. Rev. A 78, 033834 (2008).
Karzig, T., Bardyn, C. E., Lindner, N. H. & Refael, G. Topological polaritons. Phys. Rev. 5, 031001 (2015).
Kavokin, A., Malpuech, G. & Glazov, M. Optical spin Corridor impact. Phys. Rev. Lett. 95, 135501 (2005).
Bardyn, C. E., Karzig, T., Refael, G. & Liew, T. C. Topological polaritons and excitons in garden-variety programs. Phys. Rev. B Condens. Matter Mater. Phys. 91, 161413 (2015).
Nalitov, A. V., Solnyshkov, D. D. & Malpuech, G. Polariton Z topological insulator. Phys. Rev. Lett. 114, 116401 (2015).
Klembt, S. et al. Exciton–polariton topological insulator. Nature 112, 552–556 (2018).
Jacqmin, T. et al. Direct remark of Dirac cones and a flatband in a honeycomb lattice for polaritons. Phys. Rev. Lett. 112, 116402 (2014).
Actual, B. et al. Semi-Dirac transport and anisotropic localization in polariton honeycomb lattices. Phys. Rev. Lett. 125(18), 186601 (2020).
Milicévic, M. et al. Orbital edge states in a photonic honeycomb lattice. Phys. Rev. Lett. 118, 107403 (2017).
Scafirimuto, F., Urbonas, D., Scherf, U., Mahrt, R. F. & Stöferle, T. Room-temperature exciton–polariton condensation in a tunable zero-dimensional microcavity. ACS Photonics 5, 85–89 (2018).
Su, R. et al. Commentary of exciton polariton condensation in a perovskite lattice at room temperature. Nat. Phys. 16, 301–306 (2020).
Pedesseau, L. et al. Advances and guarantees of layered halide hybrid perovskite semiconductors. ACS Nano 10, 9776–9786 (2016).
Saparov, B. & Mitzi, D. B. Natural–inorganic perovskites: structural versatility for useful supplies design. Chem. Rev. 10, 4558–4596 (2016).
Thouin, F. et al. Secure biexcitons in two-dimensional metallic–halide perovskites with robust dynamic lattice dysfunction. Phys. Rev. Mater. 2, 034001 (2018).
Polimeno, L. et al. Commentary of two thresholds resulting in polariton condensation in 2D hybrid perovskites. Adv. Choose. Mater. 8, 2000176 (2020).
Fieramosca, A. et al. Two-dimensional hybrid perovskites sustaining robust polariton interactions at room temperature. Sci. Adv. 5, 9967 (2019).
Rechcinska, Ok. et al. Engineering spin–orbit artificial Hamiltonians in liquid-crystal optical cavities. Science 366, 727–730 (2019).
Ren, J. et al. Nontrivial band geometry in an optically energetic system. Nat. Comm. 12, 689 (2021).
Lédée, F. et al. Quick development of monocrystalline skinny movies of 2D layered hybrid perovskite. CrystEngComm 19, 2598–2602 (2017).
Fieramosca, A. et al. Chromodynamics of photons in a synthetic non-Abelian magnetic Yang–Mills discipline. Preprint at https://arxiv.org/abs/1912.09684 (2019).
Donati, S. et al. Twist of generalized skyrmions and spin vortices in a polariton superfluid. Proc. Natl Acad. Sci. USA 113, 14926–14931 (2016).
Berry, M. V. & Dennis, M. R. The optical singularities of birefringent dichroic chiral crystals. Proc. R. Soc. Lond. A 459, 1261–1292 (2003).
Bleu, O., Solnyshkov, D. D. & Malpuech, G. Measuring the quantum geometric tensor in two-dimensional photonic and exciton–polariton programs. Phys. Rev. B 97, 195422 (2018).
Waltersperger, S. et al. PRIGo: a brand new multi-axis goniometer for macromolecular crystallography. J. Synchrotron Radiat. 22, 895–900 (2015).
Kabsch, W. XDS. Acta Crystallogr. D 66, 125–132 (2010).
Giacovazzo, C. Phasing in Crystallography: A Trendy Perspective (Oxford Univ. Press, 2014).
Burla, M. C. et al. Crystal construction dedication and refinement through SIR2014. J. Appl. Crystallogr. 48, 306–309 (2015).
Sheldrick, G. M. SHELXT—built-in space-group and crystal-structure dedication. Acta Crystallogr. A 71, 3–8 (2015).