Wednesday, December 4, 2024
HomeNanotechnologyTuning of the Berry curvature in 2D perovskite polaritons

Tuning of the Berry curvature in 2D perovskite polaritons


  • 1.

    Aidelsburger, M., Nascimbene, S. & Goldman, N. Synthetic gauge fields in supplies and engineered programs. C. R. Phys. 19, 394–432 (2018).

    CAS 
    Article 

    Google Scholar
     

  • 2.

    J. Dalibard, Introduction to the physics of synthetic gauge fields. Preprint at https://arxiv.org/abs/1504.05520 (2015).

  • 3.

    Goldman, N., Budich, J. C. & Zoller, P. Topological quantum matter with ultracold gases in optical lattices. Nat. Phys. 12, 639–645 (2016).

    CAS 
    Article 

    Google Scholar
     

  • 4.

    Goldman, N., Juzeliunas, G., Öhberg, P. & Spielman, I. B. Gentle-induced gauge fields for ultracold atoms. Rep. Prog. Phys. 77, 126401 (2014).

    CAS 
    Article 

    Google Scholar
     

  • 5.

    Lu, L., Joannopoulos, J. D. & Soljacic, M. Topological photonics. Nat. Photon. 8, 821–829 (2014).

    CAS 
    Article 

    Google Scholar
     

  • 6.

    Hafezi, M. Artificial gauge fields with photons. Int. J. Mod. Phys. B 28, 1441002 (2014).

    Article 

    Google Scholar
     

  • 7.

    Ozawa, T. et al. Topological photonics. Rev. Mod. Phys. 91, 015006 (2019).

    CAS 
    Article 

    Google Scholar
     

  • 8.

    Vozmediano, M. A., Katsnelson, M. & Guinea, F. Gauge fields in graphene. Phys. Rep. 496, 109–148 (2010).

    CAS 
    Article 

    Google Scholar
     

  • 9.

    Ren, Y., Qiao, Z. & Niu, Q. Topological phases in two-dimensional supplies: a evaluate. Rep. Prog. Phys. 79, 066501 (2016).

    Article 

    Google Scholar
     

  • 10.

    Huber, S. D. Topological mechanics. Nat. Phys. 12, 621–623 (2016).

    CAS 
    Article 

    Google Scholar
     

  • 11.

    Gao, T. et al. Commentary of non-Hermitian degeneracies in a chaotic exciton–polariton billiard. Nature 526, 554–558 (2015).

    CAS 
    Article 

    Google Scholar
     

  • 12.

    Estrecho, E. et al. Visualising Berry part and diabolical factors in a quantum exciton–polariton billiard. Sci. Rep. 6, 37653 (2016).

    CAS 
    Article 

    Google Scholar
     

  • 13.

    Lim, H.-T., Togan, E., Kroner, M., Miguel-Sanchez, J. & Imamoglu, A. Electrically tunable synthetic gauge potential for polaritons. Nat. Commun. 8, 14540 (2017).

    CAS 
    Article 

    Google Scholar
     

  • 14.

    Berry, M. V. Quantal part components accompanying adiabatic modifications. Proc. R. Soc. Lond. A 392, 45–57 (1984).

    Article 

    Google Scholar
     

  • 15.

    Gianfrate, A. et al. Measurement of the quantum geometric tensor and of the anomalous Corridor drift. Nature 578, 381–385 (2020).

    CAS 
    Article 

    Google Scholar
     

  • 16.

    Raghu, S. & Haldane, F. D. Analogs of quantum-Corridor-effect edge states in photonic crystals. Phys. Rev. A 78, 033834 (2008).

    Article 

    Google Scholar
     

  • 17.

    Karzig, T., Bardyn, C. E., Lindner, N. H. & Refael, G. Topological polaritons. Phys. Rev. 5, 031001 (2015).

    Article 

    Google Scholar
     

  • 18.

    Kavokin, A., Malpuech, G. & Glazov, M. Optical spin Corridor impact. Phys. Rev. Lett. 95, 135501 (2005).

    Article 

    Google Scholar
     

  • 19.

    Bardyn, C. E., Karzig, T., Refael, G. & Liew, T. C. Topological polaritons and excitons in garden-variety programs. Phys. Rev. B Condens. Matter Mater. Phys. 91, 161413 (2015).

    Article 

    Google Scholar
     

  • 20.

    Nalitov, A. V., Solnyshkov, D. D. & Malpuech, G. Polariton Z topological insulator. Phys. Rev. Lett. 114, 116401 (2015).

    CAS 
    Article 

    Google Scholar
     

  • 21.

    Klembt, S. et al. Exciton–polariton topological insulator. Nature 112, 552–556 (2018).

    Article 

    Google Scholar
     

  • 22.

    Jacqmin, T. et al. Direct remark of Dirac cones and a flatband in a honeycomb lattice for polaritons. Phys. Rev. Lett. 112, 116402 (2014).

    CAS 
    Article 

    Google Scholar
     

  • 23.

    Actual, B. et al. Semi-Dirac transport and anisotropic localization in polariton honeycomb lattices. Phys. Rev. Lett. 125(18), 186601 (2020).

    CAS 
    Article 

    Google Scholar
     

  • 24.

    Milicévic, M. et al. Orbital edge states in a photonic honeycomb lattice. Phys. Rev. Lett. 118, 107403 (2017).

    Article 

    Google Scholar
     

  • 25.

    Scafirimuto, F., Urbonas, D., Scherf, U., Mahrt, R. F. & Stöferle, T. Room-temperature exciton–polariton condensation in a tunable zero-dimensional microcavity. ACS Photonics 5, 85–89 (2018).

    CAS 
    Article 

    Google Scholar
     

  • 26.

    Su, R. et al. Commentary of exciton polariton condensation in a perovskite lattice at room temperature. Nat. Phys. 16, 301–306 (2020).

    CAS 
    Article 

    Google Scholar
     

  • 27.

    Pedesseau, L. et al. Advances and guarantees of layered halide hybrid perovskite semiconductors. ACS Nano 10, 9776–9786 (2016).

    CAS 
    Article 

    Google Scholar
     

  • 28.

    Saparov, B. & Mitzi, D. B. Natural–inorganic perovskites: structural versatility for useful supplies design. Chem. Rev. 10, 4558–4596 (2016).

    Article 

    Google Scholar
     

  • 29.

    Thouin, F. et al. Secure biexcitons in two-dimensional metallic–halide perovskites with robust dynamic lattice dysfunction. Phys. Rev. Mater. 2, 034001 (2018).

    CAS 
    Article 

    Google Scholar
     

  • 30.

    Polimeno, L. et al. Commentary of two thresholds resulting in polariton condensation in 2D hybrid perovskites. Adv. Choose. Mater. 8, 2000176 (2020).

    CAS 
    Article 

    Google Scholar
     

  • 31.

    Fieramosca, A. et al. Two-dimensional hybrid perovskites sustaining robust polariton interactions at room temperature. Sci. Adv. 5, 9967 (2019).

    Article 

    Google Scholar
     

  • 32.

    Rechcinska, Ok. et al. Engineering spin–orbit artificial Hamiltonians in liquid-crystal optical cavities. Science 366, 727–730 (2019).

    CAS 
    Article 

    Google Scholar
     

  • 33.

    Ren, J. et al. Nontrivial band geometry in an optically energetic system. Nat. Comm. 12, 689 (2021).

    CAS 
    Article 

    Google Scholar
     

  • 34.

    Lédée, F. et al. Quick development of monocrystalline skinny movies of 2D layered hybrid perovskite. CrystEngComm 19, 2598–2602 (2017).

    Article 

    Google Scholar
     

  • 35.

    Fieramosca, A. et al. Chromodynamics of photons in a synthetic non-Abelian magnetic Yang–Mills discipline. Preprint at https://arxiv.org/abs/1912.09684 (2019).

  • 36.

    Donati, S. et al. Twist of generalized skyrmions and spin vortices in a polariton superfluid. Proc. Natl Acad. Sci. USA 113, 14926–14931 (2016).

    CAS 
    Article 

    Google Scholar
     

  • 37.

    Berry, M. V. & Dennis, M. R. The optical singularities of birefringent dichroic chiral crystals. Proc. R. Soc. Lond. A 459, 1261–1292 (2003).

    Article 

    Google Scholar
     

  • 38.

    Bleu, O., Solnyshkov, D. D. & Malpuech, G. Measuring the quantum geometric tensor in two-dimensional photonic and exciton–polariton programs. Phys. Rev. B 97, 195422 (2018).

    CAS 
    Article 

    Google Scholar
     

  • 39.

    Waltersperger, S. et al. PRIGo: a brand new multi-axis goniometer for macromolecular crystallography. J. Synchrotron Radiat. 22, 895–900 (2015).

    Article 

    Google Scholar
     

  • 40.

    Kabsch, W. XDS. Acta Crystallogr. D 66, 125–132 (2010).

  • 41.

    Giacovazzo, C. Phasing in Crystallography: A Trendy Perspective (Oxford Univ. Press, 2014).

  • 42.

    Burla, M. C. et al. Crystal construction dedication and refinement through SIR2014. J. Appl. Crystallogr. 48, 306–309 (2015).

    CAS 
    Article 

    Google Scholar
     

  • 43.

    Sheldrick, G. M. SHELXT—built-in space-group and crystal-structure dedication. Acta Crystallogr. A 71, 3–8 (2015).

    Article 

    Google Scholar
     

  • RELATED ARTICLES

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    Most Popular

    Recent Comments