Wednesday, December 4, 2024
HomeNanotechnologySuperluminal-like magnon propagation in antiferromagnetic NiO at nanoscale distances

Superluminal-like magnon propagation in antiferromagnetic NiO at nanoscale distances


  • 1.

    Chumak, A. V., Vasyuchka, V. I., Serga, A. A. & Hillebrands, B. Magnon spintronics. Nat. Phys. 11, 453–461 (2015).

    CAS 
    Article 

    Google Scholar
     

  • 2.

    Hou, D., Qiu, Z. & Saitoh, E. Spin transport in antiferromagnetic insulators: progress and challenges. NPG Asia Mater. 11, 35 (2019).

    Article 

    Google Scholar
     

  • 3.

    Lebrun, R. et al. Tunable long-distance spin transport in a crystalline antiferromagnetic iron oxide. Nature 561, 222–225 (2018).

    CAS 
    Article 

    Google Scholar
     

  • 4.

    Hutchings, M. T. & Samuelsen, E. J. Measurement of spin-wave dispersion in NiO by inelastic neutron scattering and its relation to magnetic properties. Phys. Rev. B 6, 3447–3461 (1972).

    CAS 
    Article 

    Google Scholar
     

  • 5.

    Gomonay, O., Jungwirth, T. & Sinova, J. Excessive antiferromagnetic area wall velocity induced by Néel spin-orbit torques. Phys. Rev. Lett. 117, 017202 (2016).

    CAS 
    Article 

    Google Scholar
     

  • 6.

    Kampfrath, T. et al. Coherent terahertz management of antiferromagnetic spin waves. Nat. Photon. 5, 31–34 (2011).

    CAS 
    Article 

    Google Scholar
     

  • 7.

    Cheng, R., Xiao, D. & Brataas, A. Terahertz antiferromagnetic spin Corridor nano-oscillator. Phys. Rev. Lett. 116, 207603 (2016).

    Article 

    Google Scholar
     

  • 8.

    Li, J. et al. Spin present from sub-terahertz-generated antiferromagnetic magnons. Nature 578, 70–74 (2020).

    CAS 
    Article 

    Google Scholar
     

  • 9.

    Vaidya, P. et al. Subterahertz spin pumping from an insulating antiferromagnet. Science 368, 160–165 (2020).

    CAS 
    Article 

    Google Scholar
     

  • 10.

    Olejník, Ok. et al. Terahertz electrical writing pace in an antiferromagnetic reminiscence. Sci. Adv. 4, eaar3566 (2018).

    Article 

    Google Scholar
     

  • 11.

    Shiino, T. et al. Antiferromagnetic area wall movement pushed by spin-orbit torques. Phys. Rev. Lett. 117, 087203 (2016).

    Article 

    Google Scholar
     

  • 12.

    Lan, J., Yu, W. & Xiao, J. Antiferromagnetic area wall as spin wave polarizer and retarder. Nat. Commun. 8, 178 (2017).

    Article 

    Google Scholar
     

  • 13.

    Daniels, M. W., Cheng, R., Yu, W., Xiao, J. & Xiao, D. Nonabelian magnonics in antiferromagnets. Phys. Rev. B 98, 134450 (2018).

    CAS 
    Article 

    Google Scholar
     

  • 14.

    Rezende, S. M., Azevedo, A. & Rodríguez-Suárez, R. L. Introduction to antiferromagnetic magnons. J. Appl. Phys. 126, 151101 (2019).

    Article 

    Google Scholar
     

  • 15.

    Brataas, A., van Wees, B., Klein, O., de Loubens, G. & Viret, M. Spin insulatronics. Phys. Rep. 885, 1–27 (2020).

    CAS 
    Article 

    Google Scholar
     

  • 16.

    Kampfrath, T. et al. Terahertz spin present pulses managed by magnetic heterostructures. Nat. Nanotechnol. 8, 256–260 (2013).

    CAS 
    Article 

    Google Scholar
     

  • 17.

    Wu, Y. et al. Excessive-performance THz emitters based mostly on ferromagnetic/nonmagnetic heterostructures. Adv. Mater. 29, 1603031 (2017).

    Article 

    Google Scholar
     

  • 18.

    Wang, H., Du, C., Hammel, P. C. & Yang, F. Antiferromagnonic spin transport from Y3Fe5O12 into NiO. Phys. Rev. Lett. 113, 097202 (2014).

    CAS 
    Article 

    Google Scholar
     

  • 19.

    Li, C. H., van’t Erve, O. M. J., Yan, C., Li, L. & Jonker, B. T. Electrical detection of charge-to-spin and spin-to-charge conversion in a topological insulator Bi2Te3 utilizing BN/Al2O3 hybrid tunnel barrier. Sci. Rep. 8, 10265 (2018).

    CAS 
    Article 

    Google Scholar
     

  • 20.

    Nogués, J. & Schuller, I. Ok. Alternate bias. J. Magn. Magn. Mater. 192, 203–232 (1999).

    Article 

    Google Scholar
     

  • 21.

    Ma, L. Y. et al. NiO-thickness dependent magnetic anisotropies in Fe/NiO/Au(001) and Fe/NiO/MgO(001) techniques. J. Magn. Magn. Mater. 324, 528–533 (2012).

    CAS 
    Article 

    Google Scholar
     

  • 22.

    Braun, L. et al. Ultrafast photocurrents on the floor of the three-dimensional topological insulator Bi2Se3. Nat. Commun. 7, 13259 (2016).

    CAS 
    Article 

    Google Scholar
     

  • 23.

    Beaurepaire, E. et al. Coherent terahertz emission from ferromagnetic movies excited by femtosecond laser pulses. Appl. Phys. Lett. 84, 3465–3467 (2004).

    CAS 
    Article 

    Google Scholar
     

  • 24.

    Higuchi, T., Kanda, N., Tamaru, H. & Kuwata-Gonokami, M. Choice guidelines for light-induced magnetization of a crystal with threefold symmetry: the case of antiferromagnetic NiO. Phys. Rev. Lett. 106, 047401 (2011).

    Article 

    Google Scholar
     

  • 25.

    Wang, Y. et al. Magnetization switching by magnon-mediated spin torque by means of an antiferromagnetic insulator. Science 366, 1125–1128 (2019).

    CAS 
    Article 

    Google Scholar
     

  • 26.

    Qiu, H. et al. Ultrafast spin present generated from an antiferromagnet. Nat. Phys. 17, 388–394 (2021).

    CAS 
    Article 

    Google Scholar
     

  • 27.

    Malozemoff, A. P. Random-field mannequin of alternate anisotropy at tough ferromagnetic-antiferromagnetic interfaces. Phys. Rev. B 35, 3679–3682 (1987).

    CAS 
    Article 

    Google Scholar
     

  • 28.

    Haldane, F. D. M. Nonlinear subject idea of large-spin Heisenberg antiferromagnets: semiclassically quantized solitons of the one-dimensional easy-axis Néel state. Phys. Rev. Lett. 50, 1153–1156 (1983).

    Article 

    Google Scholar
     

  • 29.

    Caretta, L. et al. Relativistic kinematics of a magnetic soliton. Science 370, 1438–1442 (2020).

    CAS 
    Article 

    Google Scholar
     

  • 30.

    Garrett, C. G. B. & McCumber, D. E. Propagation of a Gaussian mild pulse by means of an anomalous dispersion medium. Phys. Rev. A 1, 305–313 (1970).

    Article 

    Google Scholar
     

  • 31.

    Wang, L. J., Kuzmich, A. & Dogariu, A. Acquire-assisted superluminal mild propagation. Nature 406, 277–279 (2000).

    CAS 
    Article 

    Google Scholar
     

  • 32.

    Bigelow, M. S., Lepeshkin, N. N. & Boyd, R. W. Superluminal and gradual mild propagation in a room-temperature strong. Science 301, 200–202 (2003).

    CAS 
    Article 

    Google Scholar
     

  • 33.

    Moriyama, T. et al. Intrinsic and extrinsic antiferromagnetic damping in NiO. Phys. Rev. Mater. 3, 051402 (2019).

    CAS 
    Article 

    Google Scholar
     

  • 34.

    Khymyn, R., Lisenkov, I., Tiberkevich, V. S., Slavin, A. N. & Ivanov, B. A. Transformation of spin present by antiferromagnetic insulators. Phys. Rev. B 93, 224421 (2016).

    Article 

    Google Scholar
     

  • 35.

    Dąbrowski, M. et al. Coherent switch of spin angular momentum by evanescent spin waves inside antiferromagnetic NiO. Phys. Rev. Lett. 124, 217201 (2020).

    Article 

    Google Scholar
     

  • RELATED ARTICLES

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    Most Popular

    Recent Comments