Chumak, A. V., Vasyuchka, V. I., Serga, A. A. & Hillebrands, B. Magnon spintronics. Nat. Phys. 11, 453–461 (2015).
Hou, D., Qiu, Z. & Saitoh, E. Spin transport in antiferromagnetic insulators: progress and challenges. NPG Asia Mater. 11, 35 (2019).
Lebrun, R. et al. Tunable long-distance spin transport in a crystalline antiferromagnetic iron oxide. Nature 561, 222–225 (2018).
Hutchings, M. T. & Samuelsen, E. J. Measurement of spin-wave dispersion in NiO by inelastic neutron scattering and its relation to magnetic properties. Phys. Rev. B 6, 3447–3461 (1972).
Gomonay, O., Jungwirth, T. & Sinova, J. Excessive antiferromagnetic area wall velocity induced by Néel spin-orbit torques. Phys. Rev. Lett. 117, 017202 (2016).
Kampfrath, T. et al. Coherent terahertz management of antiferromagnetic spin waves. Nat. Photon. 5, 31–34 (2011).
Cheng, R., Xiao, D. & Brataas, A. Terahertz antiferromagnetic spin Corridor nano-oscillator. Phys. Rev. Lett. 116, 207603 (2016).
Li, J. et al. Spin present from sub-terahertz-generated antiferromagnetic magnons. Nature 578, 70–74 (2020).
Vaidya, P. et al. Subterahertz spin pumping from an insulating antiferromagnet. Science 368, 160–165 (2020).
Olejník, Ok. et al. Terahertz electrical writing pace in an antiferromagnetic reminiscence. Sci. Adv. 4, eaar3566 (2018).
Shiino, T. et al. Antiferromagnetic area wall movement pushed by spin-orbit torques. Phys. Rev. Lett. 117, 087203 (2016).
Lan, J., Yu, W. & Xiao, J. Antiferromagnetic area wall as spin wave polarizer and retarder. Nat. Commun. 8, 178 (2017).
Daniels, M. W., Cheng, R., Yu, W., Xiao, J. & Xiao, D. Nonabelian magnonics in antiferromagnets. Phys. Rev. B 98, 134450 (2018).
Rezende, S. M., Azevedo, A. & Rodríguez-Suárez, R. L. Introduction to antiferromagnetic magnons. J. Appl. Phys. 126, 151101 (2019).
Brataas, A., van Wees, B., Klein, O., de Loubens, G. & Viret, M. Spin insulatronics. Phys. Rep. 885, 1–27 (2020).
Kampfrath, T. et al. Terahertz spin present pulses managed by magnetic heterostructures. Nat. Nanotechnol. 8, 256–260 (2013).
Wu, Y. et al. Excessive-performance THz emitters based mostly on ferromagnetic/nonmagnetic heterostructures. Adv. Mater. 29, 1603031 (2017).
Wang, H., Du, C., Hammel, P. C. & Yang, F. Antiferromagnonic spin transport from Y3Fe5O12 into NiO. Phys. Rev. Lett. 113, 097202 (2014).
Li, C. H., van’t Erve, O. M. J., Yan, C., Li, L. & Jonker, B. T. Electrical detection of charge-to-spin and spin-to-charge conversion in a topological insulator Bi2Te3 utilizing BN/Al2O3 hybrid tunnel barrier. Sci. Rep. 8, 10265 (2018).
Nogués, J. & Schuller, I. Ok. Alternate bias. J. Magn. Magn. Mater. 192, 203–232 (1999).
Ma, L. Y. et al. NiO-thickness dependent magnetic anisotropies in Fe/NiO/Au(001) and Fe/NiO/MgO(001) techniques. J. Magn. Magn. Mater. 324, 528–533 (2012).
Braun, L. et al. Ultrafast photocurrents on the floor of the three-dimensional topological insulator Bi2Se3. Nat. Commun. 7, 13259 (2016).
Beaurepaire, E. et al. Coherent terahertz emission from ferromagnetic movies excited by femtosecond laser pulses. Appl. Phys. Lett. 84, 3465–3467 (2004).
Higuchi, T., Kanda, N., Tamaru, H. & Kuwata-Gonokami, M. Choice guidelines for light-induced magnetization of a crystal with threefold symmetry: the case of antiferromagnetic NiO. Phys. Rev. Lett. 106, 047401 (2011).
Wang, Y. et al. Magnetization switching by magnon-mediated spin torque by means of an antiferromagnetic insulator. Science 366, 1125–1128 (2019).
Qiu, H. et al. Ultrafast spin present generated from an antiferromagnet. Nat. Phys. 17, 388–394 (2021).
Malozemoff, A. P. Random-field mannequin of alternate anisotropy at tough ferromagnetic-antiferromagnetic interfaces. Phys. Rev. B 35, 3679–3682 (1987).
Haldane, F. D. M. Nonlinear subject idea of large-spin Heisenberg antiferromagnets: semiclassically quantized solitons of the one-dimensional easy-axis Néel state. Phys. Rev. Lett. 50, 1153–1156 (1983).
Caretta, L. et al. Relativistic kinematics of a magnetic soliton. Science 370, 1438–1442 (2020).
Garrett, C. G. B. & McCumber, D. E. Propagation of a Gaussian mild pulse by means of an anomalous dispersion medium. Phys. Rev. A 1, 305–313 (1970).
Wang, L. J., Kuzmich, A. & Dogariu, A. Acquire-assisted superluminal mild propagation. Nature 406, 277–279 (2000).
Bigelow, M. S., Lepeshkin, N. N. & Boyd, R. W. Superluminal and gradual mild propagation in a room-temperature strong. Science 301, 200–202 (2003).
Moriyama, T. et al. Intrinsic and extrinsic antiferromagnetic damping in NiO. Phys. Rev. Mater. 3, 051402 (2019).
Khymyn, R., Lisenkov, I., Tiberkevich, V. S., Slavin, A. N. & Ivanov, B. A. Transformation of spin present by antiferromagnetic insulators. Phys. Rev. B 93, 224421 (2016).
Dąbrowski, M. et al. Coherent switch of spin angular momentum by evanescent spin waves inside antiferromagnetic NiO. Phys. Rev. Lett. 124, 217201 (2020).