Lee, J. et al. Current advances in genome modifying of stem cells for drug discovery and therapeutic software. Pharmacol. Ther. 209, 107501 (2020).
Vodnala, S. Ok. et al. T cell stemness and dysfunction in tumors are triggered by a typical mechanism. Science 363, eaau0135 (2019).
Cox, D. B. T., Platt, R. J. & Zhang, F. Therapeutic genome modifying: prospects and challenges. Nat. Med. 21, 121–131 (2015).
Zhou, P. H. et al. In vivo discovery of immunotherapy targets within the tumour microenvironment. Nature 506, 52–57 (2014).
McManus, M. T. et al. Small interfering RNA-mediated gene silencing in T lymphocytes. J. Immunol. 169, 5754–5760 (2002).
June, C. H., Blazar, B. R. & Riley, J. L. Engineering lymphocyte subsets: instruments, trials and tribulations. Nat. Rev. Immunol. 9, 704–716 (2009).
Peer, D. A frightening process: manipulating leukocyte operate with RNAi. Immunol. Rev. 253, 185–197 (2013).
Yin, H. et al. Non-viral vectors for gene-based remedy. Nat. Rev. Genet. 15, 541–555 (2014).
Kaiser J. Gene remedy trials for sickle cell illness halted after two sufferers develop most cancers. Science https://doi.org/10.1126/science.abh1106 (2021).
Stewart, M. P., Langer, R. & Jensen, Ok. F. Intracellular supply by membrane disruption: mechanisms, methods, and ideas. Chem. Rev. 118, 7409–7531 (2018).
Stewart, M. P. et al. In vitro and ex vivo methods for intracellular supply. Nature 538, 183–192 (2016).
Chakravarty, P., Qian, W., El-Sayed, M. A. & Prausnitz, M. R. Supply of molecules into cells utilizing carbon nanoparticles activated by femtosecond laser pulses. Nat. Nanotechnol. 5, 607–611 (2010).
Baumgart, J. et al. Off-resonance plasmonic enhanced femtosecond laser optoporation and transfection of most cancers cells. Biomaterials 33, 2345–2350 (2012).
Lukianova-Hleb, E. Y., Ren, X. Y., Zasadzinski, J. A., Wu, X. W. & Lapotko, D. O. Plasmonic nanobubbles improve efficacy and selectivity of chemotherapy towards drug-resistant most cancers cells. Adv. Mater. 24, 3831–3837 (2012).
Heinemann, D. et al. Supply of proteins to mammalian cells by way of gold nanoparticle mediated laser transfection. Nanotechnology 25, 245101 (2014).
Lakshmanan, S. et al. Bodily power for drug supply; poration, focus and activation. Adv. Drug Deliv. Rev. 71, 98–114 (2014).
Sengupta, A., Kelly, S. C., Dwivedi, N., Thadhani, N. & Prausnitz, M. R. Environment friendly intracellular supply of molecules with excessive cell viability utilizing nanosecond-pulsed laser-activated carbon nanoparticles. ACS Nano 8, 2889–2899 (2014).
Xiong, R. H. et al. Laser-assisted photoporation: fundamentals, technological advances and functions. Adv. Phys. X 1, 596–620 (2016).
Liu, J. et al. Repeated photoporation with graphene quantum dots allows homogeneous labeling of stay cells with extrinsic markers for fluorescence microscopy. Gentle Sci. Appl. 7, 47 (2018).
Soenen, S. J. et al. Mobile toxicity of inorganic nanoparticles: widespread elements and tips for improved nanotoxicity analysis. Nano As we speak 6, 446–465 (2011).
Soenen, S. J., De Cuyper, M., De Smedt, S. C. & Braeckmans Ok. in Strategies in Enzymology Vol. 509 (ed. Düzgüneş, N.) 195–224 (Educational, 2012).
Soenen, S. J. et al. Cytotoxic results of gold nanoparticles: a multiparametric research. ACS Nano 6, 5767–5783 (2012).
Joris, F. et al. Assessing nanoparticle toxicity in cell-based assays: affect of cell tradition parameters and optimized fashions for bridging the in vitro–in vivo hole. Chem. Soc. Rev. 42, 8339–8359 (2013).
Soenen, S. J. et al. The mobile interactions of PEGylated gold nanoparticles: impact of PEGylation on mobile uptake and cytotoxicity. Half. Half. Syst. Charact. 31, 794–800 (2014).
Malysheva, A., Ivask, A., Doolette, C. L., Voelcker, N. H. & Lombi, E. Mobile binding, uptake and biotransformation of silver nanoparticles in human T lymphocytes. Nat. Nanotechnol. 16, 926–932 (2021).
Harizaj, A. et al. Cytosolic supply of gadolinium by way of photoporation allows improved in vivo magnetic resonance imaging of most cancers cells. Biomater. Sci. 9, 4005–4018 (2021).
Huang, C. et al. Stimuli-responsive electrospun fibers and their functions. Chem. Soc. Rev. 40, 2417–2434 (2011).
Lv, D., et al. Inexperienced electrospun nanofibers and their software in air filtration. Macromol. Mater. Eng. 303, 1800336 (2018).
Yamanaka, S. Pluripotent stem cell-based cell remedy—promise and challenges. Cell Stem Cell 27, 523–531 (2020).
Bargehr, J. et al. Epicardial cells derived from human embryonic stem cells increase cardiomyocyte-driven coronary heart regeneration. Nat. Biotechnol. 37, 895–906 (2019).
Pavel-Dinu, M. et al. Gene correction for SCID-X1 in long-term hematopoietic stem cells. Nat. Commun. 10, 1634 (2019).
Payment, T., Surianarayanan, S., Downs, C., Zhou, Y. & Berry, J. Nanofiber alignment regulates NIH3T3 cell orientation and cytoskeletal gene expression on electrospun PCL+gelatin nanofibers. PLoS ONE 11, e0154806 (2016).
Schmader, Ok. E. et al. Results of geriatric analysis and administration on adversarial drug reactions and suboptimal prescribing within the frail aged. Am. J. Med. 116, 394–401 (2004).
DiTommaso, T. et al. Cell engineering with microfluidic squeezing preserves performance of main immune cells in vivo. Proc. Natl Acad. Sci. USA 115, E10907–E10914 (2018).
Zhang, M. et al. The influence of Nucleofection® on the activation state of main human CD4 T cells. J. Immunol. Strategies 408, 123–131 (2014).
Xiong, R. H. et al. Comparability of gold nanoparticle mediated photoporation: vapor nanobubbles outperform direct heating for delivering macromolecules in stay cells. ACS Nano 8, 6288–6296 (2014).
Xiong, R. H. et al. Cytosolic supply of nanolabels prevents their uneven inheritance and allows prolonged quantitative in vivo cell imaging. Nano Lett. 16, 5975–5986 (2016).
Cathcart, R., Schwiers, E. & Ames, B. N. Detection of picomole ranges of hydroperoxides utilizing a fluorescent dichlorofluorescein assay. Anal. Biochem. 134, 111–116 (1983).
Lebel, C. P., Ischiropoulos, H. & Bondy, S. C. Analysis of the probe 2′,7′-dichlorofluorescin as an indicator of reactive oxygen species formation and oxidative stress. Chem. Res. Toxicol. 5, 227–231 (1992).
Bolea-Fernandez, E., Balcaen, L., Resano, M. & Vanhaecke, F. Overcoming spectral overlap by way of inductively coupled plasma-tandem mass spectrometry (ICP-MS/MS). A tutorial assessment. J. Anal. At. Spectrom. 32, 1660–1679 (2017).
Encina, E. R. & Coronado, E. A. Plasmon coupling in silver nanosphere pairs. J. Phys. Chem. C. 114, 3918–3923 (2010).
Encina, E. R. & Coronado, E. A. On the far area optical properties of Ag–Au nanosphere pairs. J. Phys. Chem. C 114, 16278–16284 (2010).
Querry, M. R. Optical Constants. PhD thesis, Univ. Missouri (1985).
Chettiar, U. Ok. & Engheta, N. Inside homogenization: efficient permittivity of a coated sphere. Choose. Categorical 20, 22976–22986 (2012).
Agari, Y. & Ueda, A. Thermal-conductivity of poly(vinyl chloride) polycaprolactone blends. J. Polym. Sci. B 32, 59–62 (1994).
Costa, M. et al. A way for genetic modification of human embryonic stem cells utilizing electroporation. Nat. Protoc. 2, 792–796 (2007).
Helledie, T., Nurcombe, V. & Cool, S. M. A easy and dependable electroporation technique for human bone marrow mesenchymal stem cells. Stem Cells Dev. 17, 837–848 (2008).
Pieters, T. et al. Environment friendly and user-friendly pluripotin-based derivation of mouse embryonic stem cells. Stem Cell Rev. Rep. 8, 768–778 (2012).
De Munter, S. et al. Speedy and efficient era of nanobody based mostly CARs utilizing PCR and Gibson meeting. Int. J. Mol. Sci. https://doi.org/10.3390/ijms21030883 (2020).
De Munter, S. et al. Nanobody based mostly twin particular CARs. Int. J. Mol. Sci. https://doi.org/10.3390/ijms19020403 (2018).