Thursday, February 6, 2025
HomeNanotechnologyPhotothermal nanofibres allow protected engineering of therapeutic cells

Photothermal nanofibres allow protected engineering of therapeutic cells


  • 1.

    Lee, J. et al. Current advances in genome modifying of stem cells for drug discovery and therapeutic software. Pharmacol. Ther. 209, 107501 (2020).

    CAS 
    Article 

    Google Scholar
     

  • 2.

    Vodnala, S. Ok. et al. T cell stemness and dysfunction in tumors are triggered by a typical mechanism. Science 363, eaau0135 (2019).

    CAS 
    Article 

    Google Scholar
     

  • 3.

    Cox, D. B. T., Platt, R. J. & Zhang, F. Therapeutic genome modifying: prospects and challenges. Nat. Med. 21, 121–131 (2015).

    CAS 
    Article 

    Google Scholar
     

  • 4.

    Zhou, P. H. et al. In vivo discovery of immunotherapy targets within the tumour microenvironment. Nature 506, 52–57 (2014).

    CAS 
    Article 

    Google Scholar
     

  • 5.

    McManus, M. T. et al. Small interfering RNA-mediated gene silencing in T lymphocytes. J. Immunol. 169, 5754–5760 (2002).

    CAS 
    Article 

    Google Scholar
     

  • 6.

    June, C. H., Blazar, B. R. & Riley, J. L. Engineering lymphocyte subsets: instruments, trials and tribulations. Nat. Rev. Immunol. 9, 704–716 (2009).

    CAS 
    Article 

    Google Scholar
     

  • 7.

    Peer, D. A frightening process: manipulating leukocyte operate with RNAi. Immunol. Rev. 253, 185–197 (2013).

    Article 
    CAS 

    Google Scholar
     

  • 8.

    Yin, H. et al. Non-viral vectors for gene-based remedy. Nat. Rev. Genet. 15, 541–555 (2014).

    CAS 
    Article 

    Google Scholar
     

  • 9.

    Kaiser J. Gene remedy trials for sickle cell illness halted after two sufferers develop most cancers. Science https://doi.org/10.1126/science.abh1106 (2021).

  • 10.

    Stewart, M. P., Langer, R. & Jensen, Ok. F. Intracellular supply by membrane disruption: mechanisms, methods, and ideas. Chem. Rev. 118, 7409–7531 (2018).

    CAS 
    Article 

    Google Scholar
     

  • 11.

    Stewart, M. P. et al. In vitro and ex vivo methods for intracellular supply. Nature 538, 183–192 (2016).

    CAS 
    Article 

    Google Scholar
     

  • 12.

    Chakravarty, P., Qian, W., El-Sayed, M. A. & Prausnitz, M. R. Supply of molecules into cells utilizing carbon nanoparticles activated by femtosecond laser pulses. Nat. Nanotechnol. 5, 607–611 (2010).

    CAS 
    Article 

    Google Scholar
     

  • 13.

    Baumgart, J. et al. Off-resonance plasmonic enhanced femtosecond laser optoporation and transfection of most cancers cells. Biomaterials 33, 2345–2350 (2012).

    CAS 
    Article 

    Google Scholar
     

  • 14.

    Lukianova-Hleb, E. Y., Ren, X. Y., Zasadzinski, J. A., Wu, X. W. & Lapotko, D. O. Plasmonic nanobubbles improve efficacy and selectivity of chemotherapy towards drug-resistant most cancers cells. Adv. Mater. 24, 3831–3837 (2012).

    CAS 
    Article 

    Google Scholar
     

  • 15.

    Heinemann, D. et al. Supply of proteins to mammalian cells by way of gold nanoparticle mediated laser transfection. Nanotechnology 25, 245101 (2014).

    Article 
    CAS 

    Google Scholar
     

  • 16.

    Lakshmanan, S. et al. Bodily power for drug supply; poration, focus and activation. Adv. Drug Deliv. Rev. 71, 98–114 (2014).

    CAS 
    Article 

    Google Scholar
     

  • 17.

    Sengupta, A., Kelly, S. C., Dwivedi, N., Thadhani, N. & Prausnitz, M. R. Environment friendly intracellular supply of molecules with excessive cell viability utilizing nanosecond-pulsed laser-activated carbon nanoparticles. ACS Nano 8, 2889–2899 (2014).

    CAS 
    Article 

    Google Scholar
     

  • 18.

    Xiong, R. H. et al. Laser-assisted photoporation: fundamentals, technological advances and functions. Adv. Phys. X 1, 596–620 (2016).

    CAS 

    Google Scholar
     

  • 19.

    Liu, J. et al. Repeated photoporation with graphene quantum dots allows homogeneous labeling of stay cells with extrinsic markers for fluorescence microscopy. Gentle Sci. Appl. 7, 47 (2018).

    Article 
    CAS 

    Google Scholar
     

  • 20.

    Soenen, S. J. et al. Mobile toxicity of inorganic nanoparticles: widespread elements and tips for improved nanotoxicity analysis. Nano As we speak 6, 446–465 (2011).

    CAS 
    Article 

    Google Scholar
     

  • 21.

    Soenen, S. J., De Cuyper, M., De Smedt, S. C. & Braeckmans Ok. in Strategies in Enzymology Vol. 509 (ed. Düzgüneş, N.) 195–224 (Educational, 2012).

  • 22.

    Soenen, S. J. et al. Cytotoxic results of gold nanoparticles: a multiparametric research. ACS Nano 6, 5767–5783 (2012).

    CAS 
    Article 

    Google Scholar
     

  • 23.

    Joris, F. et al. Assessing nanoparticle toxicity in cell-based assays: affect of cell tradition parameters and optimized fashions for bridging the in vitro–in vivo hole. Chem. Soc. Rev. 42, 8339–8359 (2013).

    CAS 
    Article 

    Google Scholar
     

  • 24.

    Soenen, S. J. et al. The mobile interactions of PEGylated gold nanoparticles: impact of PEGylation on mobile uptake and cytotoxicity. Half. Half. Syst. Charact. 31, 794–800 (2014).

    CAS 
    Article 

    Google Scholar
     

  • 25.

    Malysheva, A., Ivask, A., Doolette, C. L., Voelcker, N. H. & Lombi, E. Mobile binding, uptake and biotransformation of silver nanoparticles in human T lymphocytes. Nat. Nanotechnol. 16, 926–932 (2021).

    Article 
    CAS 

    Google Scholar
     

  • 26.

    Harizaj, A. et al. Cytosolic supply of gadolinium by way of photoporation allows improved in vivo magnetic resonance imaging of most cancers cells. Biomater. Sci. 9, 4005–4018 (2021).

    CAS 
    Article 

    Google Scholar
     

  • 27.

    Huang, C. et al. Stimuli-responsive electrospun fibers and their functions. Chem. Soc. Rev. 40, 2417–2434 (2011).

    CAS 
    Article 

    Google Scholar
     

  • 28.

    Lv, D., et al. Inexperienced electrospun nanofibers and their software in air filtration. Macromol. Mater. Eng. 303, 1800336 (2018).

    Article 
    CAS 

    Google Scholar
     

  • 29.

    Yamanaka, S. Pluripotent stem cell-based cell remedy—promise and challenges. Cell Stem Cell 27, 523–531 (2020).

    CAS 
    Article 

    Google Scholar
     

  • 30.

    Bargehr, J. et al. Epicardial cells derived from human embryonic stem cells increase cardiomyocyte-driven coronary heart regeneration. Nat. Biotechnol. 37, 895–906 (2019).

    CAS 
    Article 

    Google Scholar
     

  • 31.

    Pavel-Dinu, M. et al. Gene correction for SCID-X1 in long-term hematopoietic stem cells. Nat. Commun. 10, 1634 (2019).

    Article 
    CAS 

    Google Scholar
     

  • 32.

    Payment, T., Surianarayanan, S., Downs, C., Zhou, Y. & Berry, J. Nanofiber alignment regulates NIH3T3 cell orientation and cytoskeletal gene expression on electrospun PCL+gelatin nanofibers. PLoS ONE 11, e0154806 (2016).

    Article 
    CAS 

    Google Scholar
     

  • 33.

    Schmader, Ok. E. et al. Results of geriatric analysis and administration on adversarial drug reactions and suboptimal prescribing within the frail aged. Am. J. Med. 116, 394–401 (2004).

    Article 

    Google Scholar
     

  • 34.

    DiTommaso, T. et al. Cell engineering with microfluidic squeezing preserves performance of main immune cells in vivo. Proc. Natl Acad. Sci. USA 115, E10907–E10914 (2018).

    CAS 
    Article 

    Google Scholar
     

  • 35.

    Zhang, M. et al. The influence of Nucleofection® on the activation state of main human CD4 T cells. J. Immunol. Strategies 408, 123–131 (2014).

    CAS 
    Article 

    Google Scholar
     

  • 36.

    Xiong, R. H. et al. Comparability of gold nanoparticle mediated photoporation: vapor nanobubbles outperform direct heating for delivering macromolecules in stay cells. ACS Nano 8, 6288–6296 (2014).

    CAS 
    Article 

    Google Scholar
     

  • 37.

    Xiong, R. H. et al. Cytosolic supply of nanolabels prevents their uneven inheritance and allows prolonged quantitative in vivo cell imaging. Nano Lett. 16, 5975–5986 (2016).

    CAS 
    Article 

    Google Scholar
     

  • 38.

    Cathcart, R., Schwiers, E. & Ames, B. N. Detection of picomole ranges of hydroperoxides utilizing a fluorescent dichlorofluorescein assay. Anal. Biochem. 134, 111–116 (1983).

    CAS 
    Article 

    Google Scholar
     

  • 39.

    Lebel, C. P., Ischiropoulos, H. & Bondy, S. C. Analysis of the probe 2′,7′-dichlorofluorescin as an indicator of reactive oxygen species formation and oxidative stress. Chem. Res. Toxicol. 5, 227–231 (1992).

    CAS 
    Article 

    Google Scholar
     

  • 40.

    Bolea-Fernandez, E., Balcaen, L., Resano, M. & Vanhaecke, F. Overcoming spectral overlap by way of inductively coupled plasma-tandem mass spectrometry (ICP-MS/MS). A tutorial assessment. J. Anal. At. Spectrom. 32, 1660–1679 (2017).

    CAS 
    Article 

    Google Scholar
     

  • 41.

    Encina, E. R. & Coronado, E. A. Plasmon coupling in silver nanosphere pairs. J. Phys. Chem. C. 114, 3918–3923 (2010).

    CAS 
    Article 

    Google Scholar
     

  • 42.

    Encina, E. R. & Coronado, E. A. On the far area optical properties of Ag–Au nanosphere pairs. J. Phys. Chem. C 114, 16278–16284 (2010).

    CAS 
    Article 

    Google Scholar
     

  • 43.

    Querry, M. R. Optical Constants. PhD thesis, Univ. Missouri (1985).

  • 44.

    Chettiar, U. Ok. & Engheta, N. Inside homogenization: efficient permittivity of a coated sphere. Choose. Categorical 20, 22976–22986 (2012).

    Article 

    Google Scholar
     

  • 45.

    Agari, Y. & Ueda, A. Thermal-conductivity of poly(vinyl chloride) polycaprolactone blends. J. Polym. Sci. B 32, 59–62 (1994).

    CAS 
    Article 

    Google Scholar
     

  • 46.

    Costa, M. et al. A way for genetic modification of human embryonic stem cells utilizing electroporation. Nat. Protoc. 2, 792–796 (2007).

    CAS 
    Article 

    Google Scholar
     

  • 47.

    Helledie, T., Nurcombe, V. & Cool, S. M. A easy and dependable electroporation technique for human bone marrow mesenchymal stem cells. Stem Cells Dev. 17, 837–848 (2008).

    CAS 
    Article 

    Google Scholar
     

  • 48.

    Pieters, T. et al. Environment friendly and user-friendly pluripotin-based derivation of mouse embryonic stem cells. Stem Cell Rev. Rep. 8, 768–778 (2012).

    CAS 
    Article 

    Google Scholar
     

  • 49.

    De Munter, S. et al. Speedy and efficient era of nanobody based mostly CARs utilizing PCR and Gibson meeting. Int. J. Mol. Sci. https://doi.org/10.3390/ijms21030883 (2020).

  • 50.

    De Munter, S. et al. Nanobody based mostly twin particular CARs. Int. J. Mol. Sci. https://doi.org/10.3390/ijms19020403 (2018).

  • RELATED ARTICLES

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    Most Popular

    Recent Comments