[ad_1]
Kim, J. Y., Lee, J.-W., Jung, H. S., Shin, H. & Park, N.-G. Excessive-efficiency perovskite photo voltaic cells. Chem. Rev. 120, 7867–7918 (2020).
Quan, L. N. et al. Perovskites for next-generation optical sources. Chem. Rev. 119, 7444–7477 (2019).
Saliba, M. et al. Cesium-containing triple cation perovskite photo voltaic cells: improved stability, reproducibility and excessive effectivity. Power Environ. Sci. 9, 1989–1997 (2016).
Saliba, M. et al. Incorporation of rubidium cations into perovskite photo voltaic cells improves photovoltaic efficiency. Science 354, 206–209 (2016).
Abdi-Jalebi, M. et al. Maximising and stabilising luminescence in steel halide perovskite system buildings. Nature 555, 497–501 (2018).
Tong, J. et al. Provider lifetimes of >1 μs in Sn-Pb perovskites allow environment friendly all-perovskite tandem photo voltaic cells. Science 364, 475 (2019).
Köhnen, E. et al. Extremely environment friendly monolithic perovskite silicon tandem photo voltaic cells: analyzing the affect of present mismatch on system efficiency. Maintain. Power Fuels 3, 1995–2005 (2019).
Xu, J. et al. Triple-halide extensive–band hole perovskites with suppressed section segregation for environment friendly tandems. Science 367, 1097 (2020).
Al-Ashouri, A. et al. Monolithic perovskite/silicon tandem photo voltaic cell with >29% effectivity by enhanced gap extraction. Science 370, 1300 (2020).
Tennyson, E. M., Doherty, T. A. S. & Stranks, S. D. Heterogeneity at a number of size scales in halide perovskite semiconductors. Nat. Rev. Mater. https://doi.org/10.1038/s41578-019-0125-0 (2019).
de Quilettes, D. W. et al. Influence of microstructure on native service lifetime in perovskite photo voltaic cells. Science 348, 683 (2015).
deQuilettes, D. W. et al. Monitoring photoexcited carriers in hybrid perovskite semiconductors: trap-dominated spatial heterogeneity and diffusion. ACS Nano 11, 11488–11496 (2017).
El-Hajje, G. et al. Quantification of spatial inhomogeneity in perovskite photo voltaic cells by hyperspectral luminescence imaging. Power Environ. Sci. 9, 2286–2294 (2016).
Stolterfoht, M. et al. Visualization and suppression of interfacial recombination for high-efficiency large-area pin perovskite photo voltaic cells. Nat. Power 3, 847–854 (2018).
Doherty, T. A. S. et al. Efficiency-limiting nanoscale entice clusters at grain junctions in halide perovskites. Nature 580, 360–366 (2020).
Grancini, G. et al. One-year secure perovskite photo voltaic cells by 2D/3D interface engineering. Nat. Commun. 8, 15684 (2017).
Ni, Z. et al. Resolving spatial and energetic distributions of entice states in steel halide perovskite photo voltaic cells. Science 367, 1352–1358 (2020).
Jariwala, S. et al. Native crystal misorientation influences non-radiative recombination in halide perovskites. Joule 3, 3048–3060 (2019).
Jones, T. W. et al. Lattice pressure causes non-radiative losses in halide perovskites. Power Environ. Sci. 12, 596–606 (2019).
Kim, G. et al. Influence of pressure leisure on efficiency of α-formamidinium lead iodide perovskite photo voltaic cells. Science 370, 108 (2020).
Correa-Baena, J.-P. et al. Homogenized halides and alkali cation segregation in alloyed organic-inorganic perovskites. Science 363, 627 (2019).
Hoke, E. T. et al. Reversible photo-induced entice formation in mixed-halide hybrid perovskites for photovoltaics. Chem. Sci. 6, 613–617 (2015).
Slotcavage, D. J., Karunadasa, H. I. & McGehee, M. D. Gentle-induced section segregation in halide-perovskite absorbers. ACS Power Lett. 1, 1199–1205 (2016).
Brennan, M. C., Draguta, S., Kamat, P. V. & Kuno, M. Gentle-induced anion section segregation in blended halide perovskites. ACS Power Lett. 3, 204–213 (2018).
Leijtens, T., Bush, Ok. A., Prasanna, R. & McGehee, M. D. Alternatives and challenges for tandem photo voltaic cells utilizing steel halide perovskite semiconductors. Nat. Power 3, 828–838 (2018).
Mahesh, S. et al. Revealing the origin of voltage loss in mixed-halide perovskite photo voltaic cells. Power Environ. Sci. 13, 258–267 (2020).
Feldmann, S. et al. Photodoping via native cost service accumulation in alloyed hybrid perovskites for extremely environment friendly luminescence. Nat. Photonics 14, 123–128 (2020).
Miller, O. D., Yablonovitch, E. & Kurtz, S. R. Robust inner and exterior luminescence as photo voltaic cells method the Shockley–Queisser restrict. IEEE J. Photovolt. 2, 303–311 (2012).
Galisteo-López, J. F., Anaya, M., Calvo, M. E. & Míguez, H. Environmental results on the photophysics of natural–inorganic halide perovskites. J. Phys. Chem. Lett. 6, 2200–2205 (2015).
Andaji-Garmaroudi, Z., Anaya, M., Pearson, A. J. & Stranks, S. D. Photobrightening in lead halide perovskites: observations, mechanisms, and future potential. Adv. Power Mat. 10, 1903109 (2020).
Katahara, J. Ok. & Hillhouse, H. W. Quasi-Fermi stage splitting and sub-bandgap absorptivity from semiconductor photoluminescence. J. Appl. Phys. 116, 173504 (2014).
Stolterfoht, M. et al. The affect of vitality alignment and interfacial recombination on the inner and exterior open-circuit voltage of perovskite photo voltaic cells. Power Environ. Sci. 12, 2778–2788 (2019).
Wang, J. et al. Decreasing floor recombination velocities on the electrical contacts will enhance perovskite photovoltaics. ACS Power Lett. 4, 222–227 (2019).
Mann, S. A. et al. Quantifying losses and thermodynamic limits in nanophotonic photo voltaic cells. Nat. Nanotechnol. 11, 1071–1075 (2016).
de Mello, J. C., Wittmann, H. F. & Buddy, R. H. An improved experimental dedication of exterior photoluminescence quantum effectivity. Adv. Mater. 9, 230–232 (1997).
Richter, J. M. et al. Enhancing photoluminescence yields in lead halide perovskites by photon recycling and light-weight out-coupling. Nat. Commun. 7, 13941 (2016).
Ross, R. T. Some thermodynamics of photochemical methods. J. Chem. Phys. 46, 4590–4593 (1967).
Ledinsky, M. et al. Temperature dependence of the Urbach vitality in lead iodide perovskites. J. Phys. Chem. Lett. 10, 1368–1373 (2019).
Urbach, F. The long-wavelength fringe of photographic sensitivity and of the digital absorption of solids. Phys. Rev. 92, 1324–1324 (1953).
Piccardo, M. et al. Localization panorama idea of dysfunction in semiconductors. II. Urbach tails of disordered quantum nicely layers. Phys. Rev. B. 95, 144205 (2017).
Rolston, N. et al. Engineering stress in perovskite photo voltaic cells to enhance stability. Adv. Power Mat. 8, 1802139 (2018).
Martín-Sánchez, J. et al. Pressure-tuning of the optical properties of semiconductor nanomaterials by integration onto piezoelectric actuators. Semicond. Sci. Technol. 33, 013001 (2017).
Bioud, Y. A. et al. Uprooting defects to allow high-performance III–V optoelectronic units on silicon. Nat. Commun. 10, 4322 (2019).
Hubbard, S. M. et al. Impact of pressure compensation on quantum dot enhanced GaAs photo voltaic cells. Appl. Phys. Lett. 92, 123512 (2008).
Merdasa, A. et al. Eye within the course of: formation of ‘triple cation‘ perovskite skinny movies rationalized by in-situ optical monitoring. Preprint at Analysis Sq. https://doi.org/10.21203/rs.3.rs-102041/v1 (2021).
Man, M. Ok. L. et al. Imaging the movement of electrons throughout semiconductor heterojunctions. Nat. Nanotechnol. 12, 36–40 (2017).
Deng, S., Blach, D. D., Jin, L. & Huang, L. Imaging service dynamics and transport in hybrid perovskites with transient absorption microscopy. Adv. Power Mat. 10, 1903781 (2020).
Herz, L. M. Cost-carrier dynamics in organic-inorganic steel halide perovskites. Annu. Rev. Phys. Chem. 67, 65–89 (2016).
Yuan, M. et al. Perovskite vitality funnels for environment friendly light-emitting diodes. Nat. Nanotechnol. 11, 872–877 (2016).
Li, C. et al. Conformational dysfunction of natural cations tunes the cost service mobility in two-dimensional organic-inorganic perovskites. Nat. Commun. 11, 5481 (2020).
Szostak, R. et al. Nanoscale mapping of chemical composition in organic-inorganic hybrid perovskite movies. Sci. Adv. 5, eaaw6619 (2019).
Zhao, J. et al. Strained hybrid perovskite skinny movies and their affect on the intrinsic stability of perovskite photo voltaic cells. Sci. Adv. 3, eaao5616 (2017).
Xue, D.-J. et al. Regulating pressure in perovskite skinny movies via charge-transport layers. Nat. Commun. 11, 1514 (2020).
Lasher, G. & Stern, F. Spontaneous and stimulated recombination radiation in semiconductors. Phys. Rev. 133, A553–A563 (1964).
Wurfel, P. The chemical potential of radiation. J. Phys. C: Stable State Phys. 15, 3967–3985 (1982).
Brüggemann, R., Schulze, P., Neumann, O., Witte, W. & Bauer, G. H. Relation between luminescence and open-circuit voltage in Cu(In,Ga)Se2 photo voltaic cells. Skinny Stable Movies 535, 283–286 (2013).
Sträter, H. et al. Detailed photoluminescence research of skinny movie Cu2S for dedication of quasi-Fermi stage splitting and defect ranges. J. Appl. Phys. 114, 233506 (2013).
Babbe, F., Choubrac, L. & Siebentritt, S. Quasi Fermi stage splitting of Cu-rich and Cu-poor Cu(In,Ga)Se2 absorber layers. Appl. Phys. Lett. 109, 082105 (2016).
Braly, I. L., Stoddard, R. J., Rajagopal, A., Jen, A. Ok. Y. & Hillhouse, H. W. Photoluminescence and photoconductivity to evaluate most open-circuit voltage and service transport in hybrid perovskites and different photovoltaic supplies. J. Phys. Chem. Lett. 9, 3779–3792 (2018).
Halperin, B. I. & Lax, M. Impurity-band tails within the high-density restrict. I. Minimal counting strategies. Phys. Rev. 148, 722–740 (1966).
Braly, I. L. et al. Hybrid perovskite movies approaching the radiative restrict with over 90% photoluminescence quantum effectivity. Nat. Photonics 12, 355–361 (2018).
Quinn, P. D. et al. The Exhausting X-ray Nanoprobe beamline at Diamond Gentle Supply. J. Synchrotron Radiat. 28, 1006–1013 (2021).
Marchal, J. et al. EXCALIBUR: a small-pixel photon counting space detector for coherent X-ray diffraction—front-end design, fabrication and characterisation. J. Phys. Conf. Ser. 425, 062003 (2013).
de la Peña, F. et al. hyperspy/hyperspy: Hyperspy v.1.5.2 (Zenodo, 2019); https://doi.org/10.5281/zenodo.1221347
Kodur, M. et al. X-ray microscopy of halide perovskites: strategies, functions, and prospects. Adv. Power Mat. 10, 1903170 (2020).
Pareja-Rivera, C., Solís-Cambero, A. L., Sánchez-Torres, M., Lima, E. & Solis-Ibarra, D. On the true composition of mixed-cation perovskite movies. ACS Power Lett. 3, 2366–2367 (2018).
Virtanen, P. et al. SciPy 1.0: elementary algorithms for scientific computing in Python. Nat. Strategies 17, 261–272 (2020).
Schnedermann, C. et al. Sub-10 fs time-resolved vibronic optical microscopy. J. Phys. Chem. Lett. 7, 4854–4859 (2016).
[ad_2]