Sunday, November 9, 2025
HomeNanotechnologyLatest developments in mesoporous polydopamine-derived nanoplatforms for most cancers theranostics | Journal...

Latest developments in mesoporous polydopamine-derived nanoplatforms for most cancers theranostics | Journal of Nanobiotechnology

[ad_1]

  • 1.

    Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, Bray F. World most cancers statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 international locations. CA Most cancers J Clin. 2021;71:209–49.


    Google Scholar
     

  • 2.

    Grewal AS, Jones J, Lin A. Palliative radiation remedy for fead and neck cancers. Int J Radiat Oncol Biol Phys. 2019;105:254–66.

    PubMed 

    Google Scholar
     

  • 3.

    Siegel RL, Miller KD, Jemal A. Most cancers statistics, 2019. CA Most cancers J Clin. 2019;69:7–34.


    Google Scholar
     

  • 4.

    Feng X, Xu W, Li Z, Track W, Ding J, Chen X. Immunomodulatory nanosystems. Adv Sci (Weinh). 2019;6:1900101.


    Google Scholar
     

  • 5.

    Gotink KJ, Broxterman HJ, Labots M, de Haas RR, Dekker H, Honeywell RJ, Rudek MA, Beerepoot LV, Musters RJ, Jansen G, et al. Lysosomal sequestration of sunitinib: a novel mechanism of drug resistance. Clin Most cancers Res. 2011;17:7337–46.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 6.

    Chen J, Cui JD, Guo XT, Cao X, Li Q. Elevated expression of miR-641 contributes to erlotinib resistance in non-small-cell lung most cancers cells by focusing on NF1. Most cancers Med. 2018;7:1394–403.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 7.

    Solar F, Cui L, Li T, Chen S, Track J, Li D. Oxaliplatin induces immunogenic cells loss of life and enhances therapeutic efficacy of checkpoint inhibitor in a mannequin of murine lung carcinoma. J Recept Sign Transduct Res. 2019;39:208–14.

    CAS 
    PubMed 

    Google Scholar
     

  • 8.

    Lee H, Dellatore SM, Miller WM, Messersmith PB. Mussel-inspired floor chemistry for multifunctional coatings. Science. 2007;318:426–30.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 9.

    Li Y, Hong W, Zhang H, Zhang TT, Chen Z, Yuan S, Peng P, Xiao M, Xu L. Photothermally triggered cytosolic drug supply of glucose functionalized polydopamine nanoparticles in response to tumor microenvironment for the GLUT1-targeting chemo-phototherapy. J Management Launch. 2020;317:232–45.

    CAS 
    PubMed 

    Google Scholar
     

  • 10.

    Zeng X, Luo M, Liu G, Wang X, Tao W, Lin Y, Ji X, Nie L, Mei L. Polydopamine-modified black phosphorous nanocapsule with enhanced stability and photothermal efficiency for tumor multimodal remedies. Adv Sci (Weinh). 2018;5:1800510.


    Google Scholar
     

  • 11.

    Wang Z, Duan Y, Duan Y. Software of polydopamine in tumor focused drug supply system and its drug launch conduct. J Management Launch. 2018;290:56–74.

    CAS 
    PubMed 

    Google Scholar
     

  • 12.

    Shi J, Ma Z, Pan H, Liu Y, Chu Y, Wang J, Chen L. Biofilm-encapsulated nano drug supply system for the remedy of colon most cancers. J Microencapsul. 2020;37:481–91.

    CAS 
    PubMed 

    Google Scholar
     

  • 13.

    Fan Z, Liu Q, Lu F, Dong Z, Gao P. Software of stomach imaging based mostly on nano drug supply system for analysis and remedy of liver most cancers. J Nanosci Nanotechnol. 2021;21:824–32.

    CAS 
    PubMed 

    Google Scholar
     

  • 14.

    Zhao Q, Solar X, Wu B, Shang Y, Huang X, Dong H, Liu H, Chen W, Gui R, Li J. Development of homologous most cancers cell membrane camouflage in a nano-drug supply system for the remedy of lymphoma. J Nanobiotechnology. 2021;19:8.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 15.

    Shi M, Zhang J, Li J, Fan Y, Wang J, Solar W, Yang H, Peng C, Shen M, Shi X. Polydopamine-coated magnetic mesoporous silica nanoparticles for multimodal most cancers theranostics. J Mater Chem B. 2019;7:368–72.

    CAS 
    PubMed 

    Google Scholar
     

  • 16.

    Track Y, Cai L, Tian Z, Wu Y, Chen J. Phytochemical curcumin-coformulated, silver-decorated melanin-like polydopamine/mesoporous silica composites with improved antibacterial and chemotherapeutic results towards drug-resistant most cancers cells. ACS Omega. 2020;5:15083–94.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 17.

    Cheng W, Liang C, Xu L, Liu G, Gao N, Tao W, Luo L, Zuo Y, Wang X, Zhang X, et al. TPGS-functionalized polydopamine-modified mesoporous silica as drug nanocarriers for enhanced lung most cancers chemotherapy towards multidrug resistance. Small. 2017;13:34.


    Google Scholar
     

  • 18.

    Cheng W, Nie J, Xu L, Liang C, Peng Y, Liu G, Wang T, Mei L, Huang L, Zeng X. pH-sensitive supply automobile based mostly on folic acid-conjugated polydopamine-modified mesoporous silica nanoparticles for focused most cancers remedy. ACS Appl Mater Interfaces. 2017;9:18462–73.

    CAS 
    PubMed 

    Google Scholar
     

  • 19.

    Wei Y, Gao L, Wang L, Shi L, Wei E, Zhou B, Zhou L, Ge B. Polydopamine and peptide embellished doxorubicin-loaded mesoporous silica nanoparticles as a focused drug supply system for bladder most cancers remedy. Drug Deliv. 2017;24:681–91.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 20.

    Shao L, Li Y, Huang F, Wang X, Lu J, Jia F, Pan Z, Cui X, Ge G, Deng X, Wu Y. Complementary autophagy inhibition and glucose metabolism with rattle-structured polydopamine@mesoporous silica nanoparticles for augmented low-temperature photothermal remedy and in vivo photoacoustic imaging. Theranostics. 2020;10:7273–86.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 21.

    Lei W, Solar C, Jiang T, Gao Y, Yang Y, Zhao Q, Wang S. Polydopamine-coated mesoporous silica nanoparticles for multi-responsive drug supply and mixed chemo-photothermal remedy. Mater Sci Eng C Mater Biol Appl. 2019;105:110103.

    CAS 
    PubMed 

    Google Scholar
     

  • 22.

    Chang D, Gao Y, Wang L, Liu G, Chen Y, Wang T, Tao W, Mei L, Huang L, Zeng X. Polydopamine-based floor modification of mesoporous silica nanoparticles as pH-sensitive drug supply automobiles for most cancers remedy. J Colloid Interface Sci. 2016;463:279–87.

    CAS 
    PubMed 

    Google Scholar
     

  • 23.

    Li Y, Duo Y, Bao S, He L, Ling Okay, Luo J, Zhang Y, Huang H, Zhang H, Yu X. EpCAM aptamer-functionalized polydopamine-coated mesoporous silica nanoparticles loaded with DM1 for focused remedy in colorectal most cancers. Int J Nanomedicine. 2017;12:6239–57.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 24.

    Shao M, Chang C, Liu Z, Chen Okay, Zhou Y, Zheng G, Huang Z, Xu H, Xu P, Lu B. Polydopamine coated hole mesoporous silica nanoparticles as pH-sensitive nanocarriers for overcoming multidrug resistance. Colloids Surf B Biointerfaces. 2019;183:110427.

    CAS 
    PubMed 

    Google Scholar
     

  • 25.

    Chen L, Zhang J, Zhou X, Yang S, Zhang Q, Wang W, You Z, Peng C, He C. Merging metallic natural framework with hole organosilica nanoparticles as a flexible nanoplatform for most cancers theranostics. Acta Biomater. 2019;86:406–15.

    CAS 
    PubMed 

    Google Scholar
     

  • 26.

    Liao J, Zhang H, Wang X. Polydopamine-doped virus-like mesoporous silica coated diminished graphene oxide nanosheets for chemo-photothermal synergetic remedy. J Biomater Appl. 2020;35:28–38.

    CAS 
    PubMed 

    Google Scholar
     

  • 27.

    Chen Q, Chen Y, Zhang W, Huang Q, Hu M, Peng D, Peng C, Wang L, Chen W. Acidity and glutathione dual-responsive polydopamine-coated organic-inorganic hybrid hole mesoporous silica nanoparticles for managed drug supply. ChemMedChem. 2020;15:1940–6.

    CAS 
    PubMed 

    Google Scholar
     

  • 28.

    Chen C, Tang W, Jiang D, Yang G, Wang X, Zhou L, Zhang W, Wang P. Hyaluronic acid conjugated polydopamine functionalized mesoporous silica nanoparticles for synergistic focused chemo-photothermal remedy. Nanoscale. 2019;11:11012–24.

    CAS 
    PubMed 

    Google Scholar
     

  • 29.

    Huang C, Zhang Z, Guo Q, Zhang L, Fan F, Qin Y, Wang H, Zhou S, Ou-Yang W, Solar H, et al. A dual-model imaging theragnostic system based mostly on mesoporous silica nanoparticles for enhanced most cancers phototherapy. Adv Healthc Mater. 2019;8:e1900840.

    PubMed 

    Google Scholar
     

  • 30.

    Liu R, Zhang H, Zhang F, Wang X, Liu X, Zhang Y. Polydopamine doped diminished graphene oxide/mesoporous silica nanosheets for chemo-photothermal and enhanced photothermal remedy. Mater Sci Eng C Mater Biol Appl. 2019;96:138–45.

    CAS 
    PubMed 

    Google Scholar
     

  • 31.

    Chai S, Kan S, Solar R, Zhou R, Solar Y, Chen W, Yu B. Fabricating polydopamine-coated MoSe2-wrapped hole mesoporous silica nanoplatform for managed drug launch and chemo-photothermal remedy. Int J Nanomedicine. 2018;13:7607–21.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 32.

    Xu C, Gao F, Wu J, Niu S, Li F, Jin L, Shi Q, Du L. Biodegradable nanotheranostics with hyperthermia-induced bubble capacity for ultrasound imaging-guided chemo-photothermal remedy. Int J Nanomedicine. 2019;14:7141–53.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 33.

    Deng Z, Tang M, Zhao L, Lengthy Y, Wen Z, Cheng Y, Zheng H. Focused H+-triggered bubble-generating nanosystems for efficient remedy in most cancers cells. Colloids Surf B Biointerfaces. 2017;160:207–14.

    CAS 
    PubMed 

    Google Scholar
     

  • 34.

    Zhang Z, Zhang L, Huang C, Guo Q, Zuo Y, Wang N, Jin X, Zhang L, Zhu D. Fuel-generating mesoporous silica nanoparticles with speedy localized drug launch for enhanced chemophotothermal tumor remedy. Biomater Sci. 2020;8:6754–63.

    CAS 
    PubMed 

    Google Scholar
     

  • 35.

    Duo Y, Yang M, Du Z, Feng C, Xing C, Wu Y, Xie Z, Zhang F, Huang L, Zeng X, Chen H. CX-5461-loaded nucleolus-targeting nanoplatform for most cancers remedy via induction of pro-death autophagy. Acta Biomater. 2018;79:317–30.

    CAS 
    PubMed 

    Google Scholar
     

  • 36.

    Lu J, Liu F, Li H, Xu Y, Solar S. Width-consistent mesoporous silica nanorods with a exactly managed facet ratio for lysosome dysfunctional synergistic chemotherapy/photothermal remedy/hunger remedy/oxidative remedy. ACS Appl Mater Interfaces. 2020;12:24611–22.

    CAS 
    PubMed 

    Google Scholar
     

  • 37.

    Li Y, Duo Y, Bi J, Zeng X, Mei L, Bao S, He L, Shan A, Zhang Y, Yu X. Focused supply of anti-miR-155 by functionalized mesoporous silica nanoparticles for colorectal most cancers remedy. Int J Nanomedicine. 2018;13:1241–56.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 38.

    Zhang P, Tang M, Huang Q, Zhao G, Huang N, Zhang X, Tan Y, Cheng Y. Mixture of 3-methyladenine remedy and Asn-Gly-Arg (NGR)-modified mesoporous silica nanoparticles loaded with temozolomide for glioma remedy in vitro. Biochem Biophys Res Commun. 2019;509:549–56.

    CAS 
    PubMed 

    Google Scholar
     

  • 39.

    Cai C, Li X, Wang Y, Liu M, Shi X, Xia J, Shen M. Polydopamine-coated gold core/hole mesoporous silica shell particles as a nanoplatform for multimode imaging and photothermal remedy of tumors. Chem Eng J. 2019;362:842–50.

    CAS 

    Google Scholar
     

  • 40.

    Li X, Xie C, Xia H, Wang Z. pH and ultrasound dual-responsive polydopamine-coated mesoporous silica nanoparticles for managed drug supply. Langmuir. 2018;34:9974–81.

    CAS 
    PubMed 

    Google Scholar
     

  • 41.

    Wang L, Guan H, Wang Z, Xing Y, Zhang J, Cai Okay. Hybrid mesoporous-microporous nanocarriers for overcoming multidrug resistance by sequential drug supply. Mol Pharm. 2018;15:2503–12.

    CAS 
    PubMed 

    Google Scholar
     

  • 42.

    Shao L, Zhang R, Lu J, Zhao C, Deng X, Wu Y. Mesoporous Silica Coated Polydopamine Functionalized Lowered Graphene Oxide for Synergistic Focused Chemo-Photothermal Remedy. ACS Appl Mater Interfaces. 2017;9:1226–36.

    CAS 
    PubMed 

    Google Scholar
     

  • 43.

    Tran VA, Vo VG, Shim Okay, Lee S-W, An SSA. Multimodal mesoporous silica nanocarriers for twin stimuli-responsive drug launch and glorious photothermal ablation of most cancers cells. Int J Nanomed. 2020;15:7667–85.

    CAS 

    Google Scholar
     

  • 44.

    Ji F, Solar H, Qin Z, Zhang E, Cui J, Wang J, Li S, Yao F. Engineering polyzwitterion and polydopamine embellished doxorubicin-loaded mesoporous silica nanoparticles as a pH-sensitive drug supply. Drug. 2018;10:326.


    Google Scholar
     

  • 45.

    Zhang Z, Huang C, Zhang L, Guo Q, Qin Y, Fan F, Li B, Xiao B, Zhu D, Zhang L. pH-sensitive and bubble-generating mesoporous silica-based nanoparticles for enhanced tumor mixture remedy. Acta Pharm Sin B. 2021;11:520–33.

    CAS 
    PubMed 

    Google Scholar
     

  • 46.

    Seth A, Gholami Derami H, Gupta P, Wang Z, Rathi P, Gupta R, Cao T, Morrissey JJ, Singamaneni S. Polydopamine-mesoporous silica core-shell nanoparticles for mixed photothermal immunotherapy. ACS Appl Mater Interfaces. 2020;12:42499–510.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 47.

    Croissant JG, Fatieiev Y, Khashab NM. Degradability and clearance of silicon, organosilica, silsesquioxane, silica blended oxide, and mesoporous silica nanoparticles. Adv Mater. 2017;29:9.


    Google Scholar
     

  • 48.

    Wen J, Yang Okay, Liu F, Li H, Xu Y, Solar S. Various gatekeepers for mesoporous silica nanoparticle based mostly drug supply methods. Chem Soc Rev. 2017;46:6024–45.

    CAS 
    PubMed 

    Google Scholar
     

  • 49.

    Cheng L, Liu C, Wu H, Zhao H, Wang L. Interfacial assembled mesoporous polydopamine nanoparticles diminished graphene oxide for top efficiency of waterborne epoxy-based anticorrosive coatings. J Colloid Interface Sci. 2022;606:1572–85.

    CAS 
    PubMed 

    Google Scholar
     

  • 50.

    Qin P, Meng Y, Yang Y, Gou X, Liu N, Yin S, Hu Y, Solar H, Fu Z, Wang Y, et al. Mesoporous polydopamine nanoparticles carrying peptide RL-QN15 present potential for pores and skin wound remedy. J Nanobiotechnol. 2021;19:309.


    Google Scholar
     

  • 51.

    Qiu J, Shi Y, Xia Y. Polydopamine nanobottles with photothermal functionality for managed launch and associated functions. Adv Mater. 2021;210:4729.


    Google Scholar
     

  • 52.

    Tang J, Liu J, Li C, Li Y, Tade MO, Dai S, Yamauchi Y. Synthesis of nitrogen-doped mesoporous carbon spheres with extra-large pores via meeting of diblock copolymer micelles. Angew Chem Int Ed Engl. 2015;54:588–93.

    CAS 
    PubMed 

    Google Scholar
     

  • 53.

    Davis ME, Chen Z, Shin DM. Nanoparticle therapeutics: an rising remedy modality for most cancers. Nature Opinions Drug Discovery. 2008;7:771–82.

    CAS 
    PubMed 

    Google Scholar
     

  • 54.

    Mezzavilla S, Baldizzone C, Mayrhofer KJ, Schüth F. Common methodology for the synthesis of hole mesoporous carbon spheres with tunable textural properties. ACS Appl Mater Interfaces. 2015;7:12914–22.

    CAS 
    PubMed 

    Google Scholar
     

  • 55.

    Xin W, Track YJRA. Mesoporous carbons: latest advances in synthesis and typical functions. RSC Adv. 2015;5:83239–85.

    CAS 

    Google Scholar
     

  • 56.

    Li J, Ren H, Zou X, Cai Okay, Zhao N, Zhu G. Laborious-template synthesis of micro-mesoporous natural frameworks with managed hierarchicity. Chem Commun (Camb). 2018;54:8335–8.

    CAS 

    Google Scholar
     

  • 57.

    Kamiyama A, Kubota Okay, Igarashi D, Youn Y, Tateyama Y, Ando H, Gotoh Okay, Komaba S. MgO-template synthesis of extraordinarily excessive capability laborious carbon for Na-Ion battery. Angew Chem Int Ed Engl. 2021;60:5114–20.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 58.

    Doustkhah E, Hassandoost R, Khataee A, Luque R, Assadi MHN. Laborious-templated metal-organic frameworks for superior functions. Chem Soc Rev. 2021;50:2927–53.

    CAS 
    PubMed 

    Google Scholar
     

  • 59.

    Banerjee R, Ghosh D, Satra J, Ghosh AB, Singha D, Nandi M, Biswas P. One step synthesis of a gold/ordered mesoporous carbon composite utilizing a tough template methodology for electrocatalytic oxidation of methanol and colorimetric dedication of glutathione. ACS Omega. 2019;4:16360–71.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 60.

    Chen A, Li Y, Yu Y, Li Y, Xia Okay, Wang Y, Li S, Zhang L. Synthesis of hole mesoporous carbon spheres by way of “dissolution-capture” methodology for efficient phenol adsorption. Carbon. 2016;103:157–62.

    CAS 

    Google Scholar
     

  • 61.

    Zhao D, Tang Z, Xu W, Wu Z, Ma L-J, Cui Z, Yang C, Li L. N, S-codoped CNTs supported Co4S3 nanoparticles ready through the use of CdS nanorods as sulfur sources and laborious templates: an environment friendly catalyst for reversible oxygen electrocatalysis. J Coll Interface Sci. 2020;560:186–97.

    CAS 

    Google Scholar
     

  • 62.

    Xu Z, Wu Y, Wu H, Solar N, Deng C. Hydrophilic polydopamine-derived mesoporous channels for loading Ti(IV) ions for salivary phosphoproteome analysis. Anal Chim Acta. 2021;1146:53–60.

    CAS 
    PubMed 

    Google Scholar
     

  • 63.

    Li T, Ding B, Wang J, Qin Z, Fernando JFS, Bando Y, Nanjundan AK, Kaneti YV, Golberg D, Yamauchi Y. Sandwich-structured ordered mesoporous polydopamine/MXene hybrids as high-performance anodes for lithium-ion batteries. ACS Appl Mater Interfaces. 2020;12:14993–5001.

    CAS 
    PubMed 

    Google Scholar
     

  • 64.

    Guan BY, Yu L, Lou XW. Formation of uneven bowl-like mesoporous particles by way of emulsion-induced interface anisotropic meeting. J Am Chem Soc. 2016;138:11306–11.

    CAS 
    PubMed 

    Google Scholar
     

  • 65.

    Peng L, Hung CT, Wang S, Zhang X, Zhu X, Zhao Z, Wang C, Tang Y, Li W, Zhao D. Versatile nanoemulsion meeting method to synthesize practical mesoporous carbon nanospheres with tunable pore sizes and architectures. J Am Chem Soc. 2019;141:7073–80.

    CAS 
    PubMed 

    Google Scholar
     

  • 66.

    Peng L, Peng H, Hung C-T, Guo D, Duan L, Ma B, Liu L, Li W, Zhao D. Programmable synthesis of radially gradient-structured mesoporous carbon nanospheres with tunable core-shell architectures. Chem. 2021;7:1020–32.

    CAS 

    Google Scholar
     

  • 67.

    Lin Okay, Gan Y, Zhu P, Li S, Lin C, Yu S, Zhao S, Shi J, Li R, Yuan J. Hole mesoporous polydopamine nanospheres: synthesis, biocompatibility and drug supply. Nanotechnology. 2021;32:89.


    Google Scholar
     

  • 68.

    Guan BY, Zhang SL, Lou XWD. Realization of walnut-shaped particles with macro-/mesoporous open channels via pore structure manipulation and their use in electrocatalytic oxygen discount. Angew Chem Int Ed Engl. 2018;57:6176–80.

    CAS 
    PubMed 

    Google Scholar
     

  • 69.

    Xiao-Ling X, Mei-Xuan C, Xue-Fang L, Yu-Yin D, Gao-Feng S, Jing Q, Meng-Lu Z, Xiao-Ying Y, Lian Y, Jian-Track J, Yong-Zhong D: Sialic acid-modified mesoporous polydopamine induces tumor vessel normalization to boost photodynamic remedy by inhibiting VE-cadherin internalization. Chem Eng J 2021; 414:23.

  • 70.

    Liu Y, Fan Q, Huo Y, Liu C, Li B, Li Y. Development of a mesoporous polydopamine@GO/cellulose nanofibril composite hydrogel with an encapsulation construction for controllable drug launch and toxicity shielding. ACS Appl Mater Interfaces. 2020;12:57410–20.

    CAS 
    PubMed 

    Google Scholar
     

  • 71.

    Shu G, Chen M, Track J, Xu X, Lu C, Du Y, Xu M, Zhao Z, Zhu M, Fan Okay, et al. Sialic acid-engineered mesoporous polydopamine nanoparticles loaded with SPIO and Fe3+ as a novel theranostic agent for T1/T2 dual-mode MRI-guided mixed chemo-photothermal remedy of hepatic most cancers. Bioact Mater. 2021;6:1423–35.

    CAS 
    PubMed 

    Google Scholar
     

  • 72.

    Wu D, Zhou J, Chen X, Chen Y, Hou S, Qian H, Zhang L, Tang G, Chen Z, Ping Y, et al. Mesoporous polydopamine with built-in plasmonic core: Traceable and NIR triggered supply of practical proteins. Biomaterials. 2020;238:119847.

    CAS 
    PubMed 

    Google Scholar
     

  • 73.

    Cao H, Yang Y, Liang M, Ma Y, Solar N, Gao X, Li J. Pt@polydopamine nanoparticles as nanozymes for enhanced photodynamic and photothermal remedy. Chem Commun (Camb). 2021;57:255–8.

    CAS 

    Google Scholar
     

  • 74.

    Sadaba N, Larrañaga A, Orpella-Aceret G, Bettencourt AF, Martin V, Biggs M, Ribeiro IAC, Ugartemendia JM, Sarasua JR, Zuza E. Advantages of polydopamine as particle/matrix interface in polylactide/PD-BaSO(4) scaffolds. Int J Mol Sci. 2020;21:67.


    Google Scholar
     

  • 75.

    Feng T, Ji W, Zhang Y, Wu F, Tang Q, Wei H, Mao L, Zhang M. Zwitterionic polydopamine engineered interface for in vivo sensing with excessive biocompatibility. Angew Chem Int Ed Engl. 2020;59:23445–9.

    CAS 
    PubMed 

    Google Scholar
     

  • 76.

    Chen F, Xing Y, Wang Z, Zheng X, Zhang J, Cai Okay. Nanoscale polydopamine (PDA) meets π-π interactions: an interface-directed coassembly method for mesoporous nanoparticles. Langmuir. 2016;32:12119–28.

    CAS 
    PubMed 

    Google Scholar
     

  • 77.

    Xing Y, Zhang J, Chen F, Liu J, Cai Okay. Mesoporous polydopamine nanoparticles with co-delivery operate for overcoming multidrug resistance by way of synergistic chemo-photothermal remedy. Nanoscale. 2017;9:8781–90.

    CAS 
    PubMed 

    Google Scholar
     

  • 78.

    Wang Z, Wang L, Prabhakar N, Xing Y, Rosenholm JM, Zhang J, Cai Okay. CaP coated mesoporous polydopamine nanoparticles with responsive membrane permeation capacity for mixed photothermal and siRNA remedy. Acta Biomater. 2019;86:416–28.

    CAS 
    PubMed 

    Google Scholar
     

  • 79.

    De Ruysscher D, Niedermann G, Burnet NG, Siva S, Lee AWM, Hegi-Johnson F. Radiotherapy toxicity. Nature Opinions Illness Primers. 2019;5:13.

    PubMed 

    Google Scholar
     

  • 80.

    Barker HE, Paget JTE, Khan AA, Harrington KJ. The tumour microenvironment after radiotherapy: mechanisms of resistance and recurrence. Nature critiques Most cancers. 2015;15:409–25.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 81.

    Dou Y, Liu Y, Zhao F, Guo Y, Li X, Wu M, Chang J, Yu C. Radiation-responsive scintillating nanotheranostics for diminished hypoxic radioresistance below ROS/NO-mediated tumor microenvironment regulation. Theranostics. 2018;8:5870–89.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 82.

    Zhang J, Liu Y, Wang X, Du J, Track Okay, Li B, Chang H, Ouyang R, Miao Y, Solar Y, Li Y. Nanozyme-incorporated biodegradable bismuth mesoporous radiosensitizer for tumor microenvironment-modulated hypoxic tumor thermoradiotherapy. ACS Appl Mater Interfaces. 2020;12:57768–81.

    CAS 
    PubMed 

    Google Scholar
     

  • 83.

    Wang H, Jia D, Yuan D, Yin X, Yuan F, Wang F, Shi W, Li H, Zhu L-M, Fan Q. Dimeric Her2-specific affibody mediated cisplatin-loaded nanoparticles for tumor enhanced chemo-radiotherapy. J Nanobiotechnol. 2021;19:138.

    CAS 

    Google Scholar
     

  • 84.

    Huang X, Wu J, He M, Hou X, Wang Y, Cai X, Xin H, Gao F, Chen Y. Mixed most cancers chemo-photodynamic and photothermal remedy based mostly on ICG/PDA/TPZ-loaded nanoparticles. Mol Pharm. 2019;16:2172–83.

    CAS 
    PubMed 

    Google Scholar
     

  • 85.

    Yu HH, Lin CH, Chen YC, Chen HH, Lin YJ, Lin KA. Dopamine-modified zero-valent iron nanoparticles for dual-modality photothermal and photodynamic breast most cancers remedy. ChemMedChem. 2020;15:1645–51.

    CAS 
    PubMed 

    Google Scholar
     

  • 86.

    Zhang SQ, Liu X, Solar QX, Johnson O, Yang T, Chen ML, Wang JH, Chen W. CuS@PDA-FA nanocomposites: a twin stimuli-responsive DOX supply automobile with ultrahigh loading stage for synergistic photothermal-chemotherapies on breast most cancers. J Mater Chem B. 2020;8:1396–404.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 87.

    Liu Y, Ai Okay, Liu J, Deng M, He Y, Lu L. Dopamine-melanin colloidal nanospheres: an environment friendly near-infrared photothermal therapeutic agent for in vivo most cancers remedy. Adv Mater. 2013;25:1353–9.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 88.

    Liu X, Xie Z, Shi W, He Z, Liu Y, Su H, Solar Y, Ge D. Polynorepinephrine nanoparticles: a novel photothermal nanoagent for chemo-photothermal most cancers remedy. ACS Appl Mater Interfaces. 2019;11:19763–73.

    CAS 
    PubMed 

    Google Scholar
     

  • 89.

    Peng F, Zhao F, Shan L, Li R, Jiang S, Zhang P. Black phosphorus nanosheets-based platform for focused chemo-photothermal synergistic most cancers remedy. Colloids Surf B Biointerfaces. 2021;198:111467.

    CAS 
    PubMed 

    Google Scholar
     

  • 90.

    Qiao J, Tian F, Deng Y, Shang Y, Chen S, Chang E, Yao J. Bio-orthogonal click-targeting nanocomposites for chemo-photothermal synergistic remedy in breast most cancers. Theranostics. 2020;10:5305–21.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 91.

    Zhang L, Yang P, Guo R, Solar J, Xie R, Yang W. Multifunctional mesoporous polydopamine with hydrophobic paclitaxel for photoacoustic imaging-guided chemo-photothermal synergistic remedy. Int J Nanomed. 2019;14:8647–63.

    CAS 

    Google Scholar
     

  • 92.

    Chen L, Fu C, Deng Y, Wu W, Fu A. A pH-sensitive nanocarrier for tumor focusing on: supply of ruthenium complicated for tumor theranostic by pH-sensitive nanocapsule. Pharm Res. 2016;33:2989–98.

    CAS 
    PubMed 

    Google Scholar
     

  • 93.

    Dai Y, Xu C, Solar X, Chen X. Nanoparticle design methods for enhanced anticancer remedy by exploiting the tumour microenvironment. Chem Soc Rev. 2017;46:3830–52.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 94.

    Chen H, Chen H, Wang Y, Bai Y, Yuan P, Che Z, Zhang L. A novel self-coated polydopamine nanoparticle for synergistic photothermal-chemotherapy. Colloids Surf B Biointerfaces. 2021;200:111596.

    CAS 
    PubMed 

    Google Scholar
     

  • 95.

    Yao F, An Y, Li X, Li Z, Duan J, Yang X. Focused remedy of colon most cancers by aptamer-guided holliday junctions loaded with doxorubicin. Int J Nanomed. 2020;15:2119–29.

    CAS 

    Google Scholar
     

  • 96.

    Xu X, Li L, Li X, Tao D, Zhang P, Gong J. Aptamer-protamine-siRNA nanoparticles in focused remedy of ErbB3 optimistic breast most cancers cells. Int J Pharma. 2020;590:119963.

    CAS 

    Google Scholar
     

  • 97.

    Mou C, Yang Y, Bai Y, Yuan P, Wang Y, Zhang L. Hyaluronic acid and polydopamine functionalized part change nanoparticles for ultrasound imaging-guided photothermal-chemotherapy. J Mater Chem B. 2019;7:1246–57.

    CAS 
    PubMed 

    Google Scholar
     

  • 98.

    Wang Y, Liu Y, Zhou J-e, Lin L, Jia C, Wang J, Yu L, Wang Y, Yan Z. Controllable hydrogen launch for gas-assisted chemotherapy and ultrasonic imaging of drug-resistant tumors. Chem Eng J. 2021;421:129917.

    CAS 

    Google Scholar
     

  • 99.

    Dai L, Wei D, Zhang J, Shen T, Zhao Y, Liang J, Ma W, Zhang L, Liu Q, Zheng Y. Aptamer-conjugated mesoporous polydopamine for docetaxel focused supply and synergistic photothermal remedy of prostate most cancers. Cell Prolif. 2021;00:e13130.

    CAS 

    Google Scholar
     

  • 100.

    Bahreyni A, Mohamud Y, Luo H. Rising nanomedicines for efficient breast most cancers immunotherapy. J Nanobiotechnol. 2020;18:180.


    Google Scholar
     

  • 101.

    Huang C, Zhang L, Guo Q, Zuo Y, Wang N, Wang H, Kong D, Zhu D, Zhang L. Sturdy nanovaccine based mostly on polydopamine-coated mesoporous silica nanoparticles for efficient photothermal-immunotherapy towards melanoma. 2021;31:2010637.

    CAS 

    Google Scholar
     

  • 102.

    Wang L, He Y, He T, Liu G, Lin C, Li Okay, Lu L, Cai Okay. Lymph node-targeted immune-activation mediated by imiquimod-loaded mesoporous polydopamine based-nanocarriers. Biomaterials. 2020;255:120208.

    CAS 
    PubMed 

    Google Scholar
     

  • 103.

    Cui D, Huang J, Zhen X, Li J, Jiang Y, Pu Okay. A semiconducting polymer nano-prodrug for hypoxia-activated photodynamic most cancers remedy. Angew Chem Int Ed Engl. 2019;58:5920–4.

    CAS 
    PubMed 

    Google Scholar
     

  • 104.

    Liu T, Liu W, Zhang M, Yu W, Gao F, Li C, Wang S-B, Feng J, Zhang X-Z. Ferrous-supply-regeneration nanoengineering for cancer-cell-specific ferroptosis together with imaging-guided photodynamic remedy. ACS Nano. 2018;12:12181–92.

    CAS 
    PubMed 

    Google Scholar
     

  • 105.

    Cheng H-L, Guo H-L, Xie A-J, Shen Y-H, Zhu M-Z. 4-in-1 Fe3O4/g-C3N4@PPy-DOX nanocomposites: magnetic focusing on guided trimode combinatorial chemotherapy/PDT/PTT for most cancers. J Inorg Biochem. 2021;215:111329.

    CAS 
    PubMed 

    Google Scholar
     

  • 106.

    Zhang M, Wang W, Wu F, Zheng T, Ashley J, Mohammadniaei M, Zhang Q, Wang M, Li L, Shen J, Solar Y. Biodegradable Poly(γ-glutamic acid)@glucose oxidase@carbon dot nanoparticles for simultaneous multimodal imaging and synergetic most cancers remedy. Biomaterials. 2020;252:120106.

    CAS 
    PubMed 

    Google Scholar
     

  • 107.

    Hu X, Lu Y, Shi X, Yao T, Dong C, Shi S. Integrating in situ formation of nanozymes with mesoporous polydopamine for mixed chemo, photothermal and hypoxia-overcoming photodynamic remedy. Chem Commun (Camb). 2019;55:14785–8.

    CAS 

    Google Scholar
     

  • 108.

    Tang Z, Liu Y, He M, Bu W. Chemodynamic remedy: tumour microenvironment-mediated fenton and fenton-like reactions. 2019; 58:946–956.

  • 109.

    Ren Z, Solar S, Solar R, Cui G, Hong L, Rao B, Li A, Yu Z, Kan Q, Mao Z. A metal-polyphenol-coordinated nanomedicine for synergistic cascade most cancers chemotherapy and chemodynamic remedy. Adv Mater. 2020;32:e1906024.

    PubMed 

    Google Scholar
     

  • 110.

    Xiao Z, Zuo W, Chen L, Wu L, Liu N, Liu J, Jin Q, Zhao Y, Zhu X. H2O2 self-supplying and GSH-depleting nanoplatform for chemodynamic remedy synergetic photothermal/chemotherapy. ACS Utilized Supplies & Interfaces. 2021;13:43925–36.

    CAS 

    Google Scholar
     

  • 111.

    Huang X, Chen L, Lin Y, Tou KIP, Cai H, Jin H, Lin W, Zhang J, Cai J, Zhou H, Pi J: Tumor focusing on and penetrating biomimetic mesoporous polydopamine nanoparticles facilitate photothermal killing and autophagy blocking for synergistic tumor ablation. Acta Biomaterialia 2021.

  • 112.

    Pan P, Zhang T, Yue Q, Elzatahry AA, Alghamdi A, Cheng X, Deng Y. Interface coassembly and polymerization on magnetic colloids: towards core-shell practical mesoporous polymer microspheres and their carbon derivatives. Adv Sci (Weinh). 2020;7:2000443.

    CAS 

    Google Scholar
     

  • 113.

    Chen G, Yan Y, Wang J, Okay YS, Zhong G, Guan BY, Yamauchi Y. Common formation of macro-/mesoporous nanoshells from interfacial meeting of irregular mesostructured nanounits. Angew Chem Int Ed Engl. 2020;59:19663–8.

    CAS 
    PubMed 

    Google Scholar
     

  • 114.

    Kuang Y, Zhang Y, Zhao Y, Cao Y, Zhang Y, Chong Y, Pei R. Twin-stimuli-responsive multifunctional Gd2Hf2O7 nanoparticles for MRI-guided mixed chemo-/photothermal-/radiotherapy of resistant tumors. ACS Appl Mater Interfaces. 2020;12:35928–39.

    CAS 
    PubMed 

    Google Scholar
     

  • 115.

    Xu M, Chi B, Han Z, He Y, Tian F, Xu Z, Li L, Wang J. Controllable synthesis of uncommon earth (Gd3+,Tm3+) doped Prussian blue for multimode imaging guided synergistic remedy. Dalton Trans. 2020;49:12327–37.

    CAS 
    PubMed 

    Google Scholar
     

  • 116.

    Pu Y, Zhu Y, Qiao Z, Xin N, Chen S, Solar J, Jin R, Nie Y, Fan H. A Gd-doped polydopamine (PDA)-based theranostic nanoplatform as a robust MR/PA dual-modal imaging agent for PTT/PDT synergistic remedy. J Mater Chem B. 2021;9:1846–57.

    CAS 
    PubMed 

    Google Scholar
     

  • 117.

    Kang S, Baskaran R, Ozlu B, Davaa E, Kim JJ, Shim BS, Yang S-G: T1-positive Mn2+-doped multi-stimuli responsive poly(L-DOPA) nanoparticles for photothermal and photodynamic mixture most cancers remedy. Most cancers 2020, 8:417.

  • 118.

    Zheng Z, Chen Q, Rong S, Dai R, Jia Z, Peng X, Zhang R. Two-stage activated nano-truck enhanced particular aggregation and deep supply for synergistic tumor ablation. Nanoscale. 2020;12:15845–56.

    CAS 
    PubMed 

    Google Scholar
     

  • 119.

    Wu Y, Huang Y, Tu C, Wu F, Tong G, Su Y, Xu L, Zhang X, Xiong S, Zhu X. A mesoporous polydopamine nanoparticle permits extremely environment friendly manganese encapsulation for enhanced MRI-guided photothermal remedy. Nanoscale. 2021;13:6439–46.

    CAS 
    PubMed 

    Google Scholar
     

  • 120.

    Guan Q, Guo R, Huang S, Zhang F, Liu J, Wang Z, Yang X, Shuai X, Cao Z. Mesoporous polydopamine carrying sorafenib and SPIO nanoparticles for MRI-guided ferroptosis most cancers remedy. J Management Launch. 2020;320:392–403.

    CAS 
    PubMed 

    Google Scholar
     

  • 121.

    Fan Okay, Lu C, Shu G, Lv XL, Qiao E, Zhang N, Chen M, Track J, Wu F, Zhao Z, et al. Sialic acid-engineered mesoporous polydopamine twin loaded with ferritin gene and SPIO for reaching endogenous and exogenous synergistic T2-weighted magnetic resonance imaging of HCC. J Nanobiotechno. 2021;19:76.

    CAS 

    Google Scholar
     

  • 122.

    Zhou D, Li C, He M, Ma M, Li P, Gong Y, Ran H, Wang Z, Wang Z, Zheng Y, Solar Y. Folate-targeted perfluorohexane nanoparticles carrying bismuth sulfide to be used in US/CT dual-mode imaging and synergistic high-intensity targeted ultrasound ablation of cervical most cancers. J Mater Chem B. 2016;4:4164–81.

    CAS 
    PubMed 

    Google Scholar
     

  • 123.

    Fukuda H, Numata Okay, Nozaki A, Morimoto M, Kondo M, Tanaka Okay, Maeda S, Yamagata J, Ohto M, Ito R, et al. Usefulness of US-CT 3D twin imaging for the planning and monitoring of hepatocellular carcinoma remedy utilizing HIFU. Eur J Radiol. 2011;80:e306–10.


    Google Scholar
     

  • 124.

    Mauri G, Monfardini L, Della Vigna P, Montano F, Bonomo G, Buccimazza G, Camisassi N, Rossi D, Maiettini D, Varano GM, et al. Actual-Time US-CT fusion imaging for steerage of thermal ablation in of renal tumors invisible or poorly seen with US: ends in 97 instances. Int J Hyperthermia. 2021;38:771–6.

    CAS 
    PubMed 

    Google Scholar
     

  • 125.

    Yuan G, Cen J, Liao J, Huang Y, Jie L. In situ hydrogen nanogenerator for bimodal imaging guided synergistic photothermal/hydrogen therapies. Nanoscale. 2021;13:15576–89.

    CAS 
    PubMed 

    Google Scholar
     

  • 126.

    Nishio N, van den Berg NS, Martin BA, van Keulen S, Fakurnejad S, Rosenthal EL, Wilson KE. Photoacoustic molecular imaging for the identification of lymph node metastasis in head and neck most cancers utilizing an anti-EGFR antibody-dye conjugate. J Nucl Med. 2021;62:648–55.

    CAS 
    PubMed 

    Google Scholar
     

  • 127.

    Ding N, Sano Okay, Kanazaki Okay, Shimizu Y, Watanabe H, Namita T, Shiina T, Ono M, Saji H. Delicate photoacoustic/magnetic resonance twin imaging probe for detection of malignant tumors. J Pharm Sci. 2020;109:3153–9.

    CAS 
    PubMed 

    Google Scholar
     

  • 128.

    Park B, Bang CH, Lee C, Han JH, Choi W, Kim J, Park GS, Rhie JW, Lee JH, Kim C. 3D wide-field multispectral photoacoustic imaging of human melanomas in vivo: a pilot examine. J Eur Acad Dermatol Venereol. 2021;35:669–76.

    CAS 
    PubMed 

    Google Scholar
     

  • 129.

    Yang M, Zhang N, Zhang T, Yin X, Shen J. Fabrication of doxorubicin-gated mesoporous polydopamine nanoplatforms for multimode imaging-guided synergistic chemophotothermal remedy of tumors. Drug Deliv. 2020;27:367–77.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 130.

    Jagat RK, Rupinder KK, Hannah B, Sara B. Latest advances on the roles of NO in most cancers and persistent inflammatory issues. Curr Med Chem. 2009;16:2373–94.


    Google Scholar
     

  • 131.

    Gorini F, Del Turco S, Sabatino L, Gaggini M, Vassalle C. H2S as a bridge linking irritation, oxidative stress and endothelial biology: a doable protection within the struggle towards SARS-CoV-2 an infection? An infection 2021, 9:1107.

  • 132.

    Gullotta F, Masi Advert, Ascenzi P. Carbon monoxide: An uncommon drug. IUBMB Life. 2012;64:378–86.

    CAS 
    PubMed 

    Google Scholar
     

  • 133.

    Wu D, Duan X, Guan Q, Liu J, Yang X, Zhang F, Huang P, Shen J, Shuai X, Cao Z: Mesoporous polydopamine carrying manganese carbonyl responds to tumor microenvironment for multimodal imaging-guided most cancers remedy. Adv Func Mater 2019, 29:89.

  • 134.

    Diot G, Metz S, Noske A, Liapis E, Schroeder B, Ovsepian SV, Meier R, Rummeny E, Ntziachristos V. Multispectral optoacoustic tomography (MSOT) of human breast most cancers. Clin Most cancers Res. 2017;23:6912–22.

    CAS 
    PubMed 

    Google Scholar
     

  • 135.

    Yang S, You Q, Yang L, Li P, Lu Q, Wang S, Tan F, Ji Y, Li N. Rodlike MSN@Au nanohybrid-modified supermolecular photosensitizer for NIRF/MSOT/CT/MR quadmodal imaging-guided photothermal/photodynamic most cancers remedy. ACS Appl Mater Interfaces. 2019;11:6777–88.

    CAS 
    PubMed 

    Google Scholar
     

  • 136.

    Cheng Y, Lu T, Wang Y, Track Y, Wang S, Lu Q, Yang L, Tan F, Li J, Li N. Glutathione-mediated clearable nanoparticles based mostly on ultrasmall Gd2O3 for MSOT/CT/MR imaging guided photothermal/radio mixture most cancers remedy. Mol Pharm. 2019;16:3489–501.

    CAS 
    PubMed 

    Google Scholar
     

  • 137.

    Ke Okay, Yang W, Xie X, Liu R, Wang LL, Lin WW, Huang G, Lu CH, Yang HH. Copper manganese sulfide nanoplates: a brand new two-dimensional theranostic nanoplatform for MRI/MSOT dual-modal imaging-guided photothermal remedy within the second near-infrared window. Theranostics. 2017;7:4763–76.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 138.

    Wang Y, Track S, Lu T, Cheng Y, Track Y, Wang S, Tan F, Li J, Li N. Oxygen-supplementing mesoporous polydopamine nanosponges with WS2 QDs-embedded for CT/MSOT/MR imaging and thermoradiotherapy of hypoxic most cancers. Biomaterials. 2019;220:119405.

    CAS 
    PubMed 

    Google Scholar
     

  • 139.

    Van den Wyngaert T, Elvas F, De Schepper S, Kennedy JA, Israel O: SPECT/CT: standing on the shoulders of giants, it’s time to attain for the sky! J Nucl Med 2020, 61:1284–1291.

  • 140.

    Ritt P, Kuwert T. Quantitative SPECT/CT—method and scientific functions. In Molecular Imaging in Oncology. In: Schober O, Kiessling F, Debus J, ed. Cham: Springer Worldwide Publishing; 2020. p. 565–90

  • 141.

    Huang S, Wu Y, Li C, Xu L, Huang J, Huang Y, Cheng W, Xue B, Zhang L, Liang S, et al. Tailoring morphologies of mesoporous polydopamine nanoparticles to ship high-loading radioiodine for anaplastic thyroid carcinoma imaging and remedy. Nanoscale. 2021;13:15021–30.

    CAS 
    PubMed 

    Google Scholar
     

  • 142.

    Liu G, Wang L, Liu J, Lu L, Mo D, Li Okay, Yang X, Zeng R, Zhang J, Liu P, Cai Okay. Engineering of a core-shell nanoplatform to beat multidrug resistance by way of ATP deprivation. Adv Healthc Mater. 2020;9:e2000432.

    PubMed 

    Google Scholar
     

  • 143.

    Ding M, Miao Z, Zhang F, Liu J, Shuai X, Zha Z, Cao Z. Catalytic rhodium (Rh)-based (mesoporous polydopamine) MPDA nanoparticles with enhanced phototherapeutic effectivity for overcoming tumor hypoxia. Biomater Sci. 2020;8:4157–65.

    CAS 
    PubMed 

    Google Scholar
     

  • 144.

    Wang Z, Zhang J, Chen F, Cai Okay. Fluorescent miRNA evaluation enhanced by mesopore results of polydopamine nanoquenchers. Analyst. 2017;142:2796–804.

    CAS 
    PubMed 

    Google Scholar
     

  • 145.

    Cheng W, Zeng X, Chen H, Li Z, Zeng W, Mei L, Zhao Y. Versatile Polydopamine Platforms: Synthesis and Promising Purposes for Floor Modification and Superior Nanomedicine. ACS Nano. 2019;13:8537–65.

    CAS 
    PubMed 

    Google Scholar
     

  • 146.

    Mrówczyński R, Bunge A, Liebscher J: Polydopamine—an organocatalyst slightly than an harmless polymer. 2014; 20:8647–8653.

  • [ad_2]

    RELATED ARTICLES

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    Most Popular

    Recent Comments