Thursday, April 18, 2024
HomeNanotechnologyLaser-triggered mixture remedy by iron sulfide-doxorubicin@functionalized nanozymes for breast most cancers remedy...

Laser-triggered mixture remedy by iron sulfide-doxorubicin@functionalized nanozymes for breast most cancers remedy | Journal of Nanobiotechnology


  • 1.

    Fang X, Cao J, Shen A. Advances in anti-breast most cancers medication and the appliance of nano-drug supply programs in breast most cancers remedy. J Drug Deliv Sci Technol. 2020;2020:101662.

    Article 
    CAS 

    Google Scholar
     

  • 2.

    Sharifi M, Hasan A, Attar F, Taghizadeh A, Falahati M. Improvement of point-of-care nanobiosensors for breast cancers analysis. Talanta. 2020;217:121091.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 3.

    Ma X, Wang Y, Liu X-L, Ma H, Li G, Li Y, Gao F, Peng M, Fan HM, Liang X-J. Fe3O4–Pd Janus nanoparticles with amplified dual-mode hyperthermia and enhanced ROS technology for breast most cancers therapy. Nanoscale Horizons. 2019;4:1450–9.

    CAS 
    Article 

    Google Scholar
     

  • 4.

    Khan S, Sharifi M, Bloukh SH, Edis Z, Siddique R, Falahati M. In vivo guiding inorganic nanozymes for biosensing and therapeutic potential in most cancers, irritation and microbial infections. Talanta. 2021;224:121805.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 5.

    Choi WJ, Kim Y, Cha JH, Shin HJ, Chae EY, Yoon GY, Kim HH. Correlation between magnetic resonance imaging and the extent of tumor-infiltrating lymphocytes in sufferers with estrogen receptor-negative HER2-positive breast most cancers. Acta Radiol. 2020;61:3–10.

    PubMed 
    Article 

    Google Scholar
     

  • 6.

    Sharifi M, Jafari S, Hasan A, Paray BA, Gong G, Zheng Y, Falahati M. Antimetastatic exercise of lactoferrin-coated mesoporous maghemite nanoparticles in breast most cancers enabled by mixture remedy. ACS Biomater Sci Eng. 2020;6:3574–84.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 7.

    Hou H, Huang X, Wei G, Xu F, Wang Y, Zhou S. Fenton reaction-assisted photodynamic remedy for most cancers with multifunctional magnetic nanoparticles. ACS Appl Mater Interfaces. 2019;11:29579–92.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 8.

    Sharifi M, Hasan A, Nanakali NMQ, Salihi A, Qadir FA, Muhammad HA, Shekha MS, Aziz FM, Amen KM, Najafi F, et al. Mixed chemo-magnetic field-photothermal breast most cancers remedy based mostly on porous magnetite nanospheres. Sci Rep. 2020;10:5925.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 9.

    Sharifi M, Hosseinali SH, Yousefvand P, Salihi A, Shekha MS, Aziz FM, JouyaTalaei A, Hasan A, Falahati M. Gold nanozyme: biosensing and therapeutic actions. Mater Sci Eng C. 2020;108:110422.

    CAS 
    Article 

    Google Scholar
     

  • 10.

    Sharifi M, Hosseinali SH, Saboury AA, Szegezdi E, Falahati M. Involvement of deliberate cell demise of necroptosis in most cancers therapy by nanomaterials: current advances and future views. J Management Launch. 2019;299:121–37.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 11.

    Maharjan A, Dikshit PK, Gupta A, Kim BS. Catalytic exercise of magnetic iron oxide nanoparticles for hydrogen peroxide decomposition: optimization and characterization. J Chem Technol Biotechnol. 2020;95:2495.

    CAS 
    Article 

    Google Scholar
     

  • 12.

    Pal S, Jana NR. Pharmacologic vitamin C-based cell remedy by way of iron oxide nanoparticle-induced intracellular Fenton response. ACS Appl Nano Mater. 2020;3:1683–92.

    CAS 
    Article 

    Google Scholar
     

  • 13.

    He Y-J, Liu X-Y, Xing L, Wan X, Chang X, Jiang H-L. Fenton reaction-independent ferroptosis remedy by way of Glutathione and iron redox couple sequentially triggered lipid peroxide generator. Biomaterials. 2020;2020:119911.

    Article 
    CAS 

    Google Scholar
     

  • 14.

    Li M, Wang X, Lu S, He C, Wang C, Wang L, Wang X, Ge P, Track D. Erastin triggers autophagic demise of breast most cancers cells by growing intracellular iron ranges. Oncol Lett. 2020;20:1–1.

    CAS 

    Google Scholar
     

  • 15.

    Nakamura T, Naguro I, Ichijo H. Iron homeostasis and iron-regulated ROS in cell demise, senescence and human ailments. Biochim Biophys Acta (BBA) Gen Sub. 2019;1863:1398–409.

    CAS 
    Article 

    Google Scholar
     

  • 16.

    Zhao M-X, Wen J-L, Wang L, Wang X-P, Chen T-S. Intracellular catalase exercise as a substitute of glutathione degree dominates the resistance of cells to reactive oxygen species. Cell Stress Chaperones. 2019;24:609–19.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 17.

    Zhang M-L, Wu H-T, Chen W-J, Xu Y, Ye Q-Q, Shen J-X, Liu J. Involvement of glutathione peroxidases within the incidence and improvement of breast cancers. J Transl Med. 2020;18:1–11.

    CAS 
    Article 

    Google Scholar
     

  • 18.

    Yang L, Schoenfisch MH. Nitric oxide-releasing hyperbranched polyaminoglycosides for antibacterial remedy. ACS Appl Bio Mater. 2018;1:1066–73.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 19.

    Zhang Y, Tan S, Xu J, Wang T. Hydrogen remedy in cardiovascular and metabolic ailments: from bench to bedside. Cell Physiol Biochem. 2018;47:1–10.

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • 20.

    Pearson-Smith JN, Patel M. Antioxidant drug remedy as a neuroprotective countermeasure of nerve agent toxicity. Neurobiol Dis. 2020;133:104457.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 21.

    Zhang P, Li Y, Tang Y, Shen H, Li J, Yi Z, Ke Q, Xu H. Copper-based metal-organic framework as a controllable nitric oxide-releasing automobile for enhanced diabetic wound therapeutic. ACS Appl Mater Interfaces. 2020;12:18319–31.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 22.

    Li S, Liu R, Jiang X, Qiu Y, Track X, Huang G, Fu N, Lin L, Track J, Chen X. Close to-infrared light-triggered sulfur dioxide gasoline remedy of most cancers. ACS Nano. 2019;13:2103–13.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 23.

    Khan S, Sharifi M, Hasan A, Attar F, Edis Z, Bai Q, Derakhshankhah H, Falahati M. Magnetic nanocatalysts as multifunctional platforms in most cancers remedy by the synthesis of anticancer medication and facilitated Fenton response. J Adv Res. 2020;30:171.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • 24.

    Cao X, Ding L, Xie Z-Z, Yang Y, Whiteman M, Moore PK, Bian J-S. A evaluate of hydrogen sulfide synthesis, metabolism, and measurement: is modulation of hydrogen sulfide a novel therapeutic for most cancers? Antioxidants Redox Sign. 2019;31:1–38.

    CAS 
    Article 

    Google Scholar
     

  • 25.

    Li J, Li X, Yuan Y, Wang Q, Xie L, Dai Y, Wang W, Li L, Lu X, Fan Q. Environment friendly polysulfide-based nanotheranostics for triple-negative breast most cancers: ratiometric photoacoustics monitored tumor microenvironment-initiated H2S remedy. Small. 2020;16:2002939.

    CAS 
    Article 

    Google Scholar
     

  • 26.

    He T, Qin X, Jiang C, Jiang D, Lei S, Lin J, Zhu W-G, Qu J, Huang P. Tumor pH-responsive metastable-phase manganese sulfide nanotheranostics for traceable hydrogen sulfide gasoline remedy primed chemodynamic remedy. Theranostics. 2020;10:2453.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 27.

    Corpas FJ, Barroso JB, González-Gordo S, Muñoz-Vargas MA, Palma JM. Hydrogen sulfide: a novel part in Arabidopsis peroxisomes which triggers catalase inhibition. J Integr Plant Biol. 2019;61:871–83.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 28.

    Wei T, Xiaojun X, Peilong C. Magnoflorine improves sensitivity to doxorubicin (DOX) of breast most cancers cells by way of inducing apoptosis and autophagy by AKT/mTOR and p38 signaling pathways. Biomed Pharmacother. 2020;121:109139.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 29.

    Zhao Y, Alakhova DY, Zhao X, Band V, Batrakova EV, Kabanov AV. Eradication of most cancers stem cells in triple unfavorable breast most cancers utilizing doxorubicin/pluronic polymeric micelles. Nanomed Nanotechnol Biol Med. 2020;24:102124.

    CAS 
    Article 

    Google Scholar
     

  • 30.

    Xinyong C, Zhiyi Z, Lang H, Peng Y, Xiaocheng W, Ping Z, Liang S. The function of toll-like receptors in myocardial toxicity induced by doxorubicin. Immunol Lett. 2020;217:56–64.

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • 31.

    Zhang M, Asghar S, Tian C, Hu Z, Ping Q, Chen Z, Shao F, Xiao Y. Lactoferrin/phenylboronic acid-functionalized hyaluronic acid nanogels loading doxorubicin hydrochloride for concentrating on glioma. Carbohydr Polym. 2020;2020:117194.


    Google Scholar
     

  • 32.

    Kondapi AK. Concentrating on most cancers with lactoferrin nanoparticles: current advances. Nanomedicine. 2020;15:2071–83.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 33.

    Lin W-C, Huang C-C, Lin S-J, Li M-J, Chang Y, Lin Y-J, Wan W-L, Shih P-C, Sung H-W. In situ depot comprising phase-change supplies that may sustainably launch a gasotransmitter H2S to deal with diabetic wounds. Biomaterials. 2017;145:1–8.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 34.

    LeBel CP, Ischiropoulos H, Bondy SC. Analysis of the probe 2′, 7′-dichlorofluorescin as an indicator of reactive oxygen species formation and oxidative stress. Chem Res Toxicol. 1992;5:227–31.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 35.

    Peng B, Chen W, Liu C, Rosser EW, Pacheco A, Zhao Y, Aguilar HC, Xian M. Fluorescent probes based mostly on nucleophilic substitution-cyclization for hydrogen sulfide detection and bioimaging. Chemistry (Weinheim an der Bergstrasse, Germany). 2014;20:1010–6.

    CAS 

    Google Scholar
     

  • 36.

    Zhang W, Shi Y, Chen Y, Yu S, Hao J, Luo J, Sha X, Fang X. Enhanced antitumor efficacy by paclitaxel-loaded pluronic P123/F127 combined micelles towards non-small cell lung most cancers based mostly on passive tumor concentrating on and modulation of drug resistance. Eur J Pharm Biopharm. 2010;75:341–53.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 37.

    Chizenga EP, Abrahamse H. Nanotechnology in trendy photodynamic remedy of most cancers: a evaluate of mobile resistance patterns affecting the therapeutic response. Pharmaceutics. 2020;12:632.

    CAS 
    PubMed Central 
    Article 
    PubMed 

    Google Scholar
     

  • 38.

    Sharifi M, Attar F, Saboury AA, Akhtari Ok, Hooshmand N, Hasan A, El-Sayed M, Falahati M. Plasmonic gold nanoparticles: optical manipulation, imaging, drug supply and remedy. J Management Launch. 2019;311–312:170–89.

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • 39.

    Solar M, Duan Y, Ma Y, Zhang Q. Most cancers cell-erythrocyte hybrid membrane coated gold nanocages for close to infrared light-activated photothermal/radio/chemotherapy of breast most cancers. Int J Nanomed. 2020;15:6749.

    CAS 
    Article 

    Google Scholar
     

  • 40.

    Sathiyaraj E, Thirumaran S. Structural, morphological and optical properties of iron sulfide, cobalt sulfide, copper sulfide, zinc sulfide and copper-iron sulfide nanoparticles synthesized from single supply precursors. Chem Phys Lett. 2020;739:136972.

    CAS 
    Article 

    Google Scholar
     

  • 41.

    Yang W, Xiang C, Xu Y, Chen S, Zeng W, Liu Ok, Jin X, Zhou X, Zhang B. Albumin-constrained large-scale synthesis of renal clearable ferrous sulfide quantum dots for T1-Weighted MR imaging and phototheranostics of tumors. Biomaterials. 2020;255:120186.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 42.

    Shankaranarayanan JS, Kanwar JR, Abd AL-Juhaishi AJ, Kanwar RK. Doxorubicin conjugated to immunomodulatory anticancer lactoferrin shows improved cytotoxicity overcoming prostate most cancers chemo resistance and inhibits tumour improvement in TRAMP mice. Sci Rep. 2016;6:1–16.

    Article 
    CAS 

    Google Scholar
     

  • 43.

    Zhang Y, Wang F, Liu C, Wang Z, Kang L, Huang Y, Dong Ok, Ren J, Qu X. Nanozyme embellished metal-organic frameworks for enhanced photodynamic remedy. ACS Nano. 2018;12:651–61.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 44.

    Falahati M, Attar F, Sharifi M, Saboury AA, Salihi A, Aziz FM, Kostova I, Burda C, Priecel P, Lopez-Sanchez JA. Gold nanomaterials as key suppliers in organic and chemical sensing, catalysis, and medication. Biochim Biophys Acta (BBA) Gen Subj. 2019;1864:129435.

    Article 
    CAS 

    Google Scholar
     

  • 45.

    Zhang C, Bu W, Ni D, Zhang S, Li Q, Yao Z, Zhang J, Yao H, Wang Z, Shi J. Synthesis of iron nanometallic glasses and their utility in most cancers remedy by a localized Fenton response. Angew Chem Int Ed. 2016;55:2101–6.

    CAS 
    Article 

    Google Scholar
     

  • 46.

    He J, Zhang Y, Zhang X, Huang Y. Extremely environment friendly Fenton and enzyme-mimetic actions of NH2-MIL-88B(Fe) steel natural framework for methylene blue degradation. Sci Rep. 2018;8:5159.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 47.

    Molla A, Sahu M, Hussain S. Below darkish and visual gentle: quick degradation of methylene blue within the presence of Ag–In–Ni–S nanocomposites. J Mater Chem A. 2015;3:15616–25.

    CAS 
    Article 

    Google Scholar
     

  • 48.

    Xie C, Cen D, Ren Z, Wang Y, Wu Y, Li X, Han G, Cai X. FeS@ BSA nanoclusters to allow H2S-amplified ROS-based remedy with MRI steering. Adv Sci. 2020;7:1903512.

    CAS 
    Article 

    Google Scholar
     

  • 49.

    Maji SK, Dutta AK, Biswas P, Srivastava DN, Paul P, Mondal A, Adhikary B. Synthesis and characterization of FeS nanoparticles obtained from a dithiocarboxylate precursor advanced and their photocatalytic, electrocatalytic and biomimic peroxidase habits. Appl Catal A. 2012;419:170–7.

    Article 
    CAS 

    Google Scholar
     

  • 50.

    Chen W, Li S, Wang J, Solar Ok, Si Y. Metallic and metal-oxide nanozymes: bioenzymatic traits, catalytic mechanism, and eco-environmental purposes. Nanoscale. 2019;11:15783–93.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 51.

    Fu S, Wang S, Zhang X, Qi A, Liu Z, Yu X, Chen C, Li L. Structural impact of Fe3O4 nanoparticles on peroxidase-like exercise for most cancers remedy. Colloids Surf B. 2017;154:239–45.

    CAS 
    Article 

    Google Scholar
     

  • 52.

    Ma Y, Li X, Li A, Yang P, Zhang C, Tang B. H2S-activable MOF nanoparticle photosensitizer for efficient photodynamic remedy towards most cancers with controllable singlet-oxygen launch. Angew Chem. 2017;129:13940–4.

    Article 

    Google Scholar
     

  • 53.

    Kou Z, Zhao P, Wang Z, Jin Z, Chen L, Su B-L, He Q. Acid-responsive H2-releasing Fe nanoparticles for secure and efficient most cancers remedy. J Mater Chem B. 2019;7:2759–65.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 54.

    Singh N, Nayak J, Sahoo SK, Kumar R. Glutathione conjugated superparamagnetic Fe3O4-Au core shell nanoparticles for pH managed launch of DOX. Mater Sci Eng C. 2019;100:453–65.

    CAS 
    Article 

    Google Scholar
     

  • 55.

    Xiao S, Lu Y, Feng M, Dong M, Cao Z, Zhang X, Chen Y, Liu J. Multifunctional FeS2 theranostic nanoparticles for photothermal-enhanced chemodynamic/photodynamic most cancers remedy and photoacoustic imaging. Chem Eng J. 2020;2020:125294.

    Article 
    CAS 

    Google Scholar
     

  • 56.

    Xiao AY, Maynard MR, Piett CG, Nagel ZD, Alexander JS, Kevil CG, Berridge MV, Pattillo CB, Rosen LR, Miriyala S, Harrison L. Sodium sulfide selectively induces oxidative stress, DNA injury, and mitochondrial dysfunction and radiosensitizes glioblastoma (GBM) cells. Redox Biol. 2019;26:101220.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 57.

    Shaikh S, Younis M, Rehman FU, Jiang H, Wang X. Particular oxide nanoclusters improve intracellular reactive oxygen species for cancer-targeted remedy. Langmuir. 2020;36:9472–80.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 58.

    Wan X, Track L, Pan W, Zhong H, Li N, Tang B. Tumor-targeted cascade nanoreactor based mostly on metal-organic frameworks for synergistic ferroptosis-starvation anticancer remedy. ACS Nano. 2020;14:11017–28.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 59.

    Chang Y, Cheng Y, Feng Y, Jian H, Wang L, Ma X, Li X, Zhang H. Resonance power transfer-promoted photothermal and photodynamic efficiency of gold-copper sulfide yolk-shell nanoparticles for chemophototherapy of most cancers. Nano Lett. 2018;18:886–97.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 60.

    She D, Peng S, Liu L, Huang H, Zheng Y, Lu Y, Geng D, Yin B. Biomimic FeS2 nanodrug with hypothermal photothermal impact by medical authorized NIR-II gentle for augmented chemodynamic remedy. Chem Eng J. 2020;400:125933.

    CAS 
    Article 

    Google Scholar
     

  • 61.

    Zou Y, Li D, Wang Y, Ouyang Z, Peng Y, Tomás H, Xia J, Rodrigues JO, Shen M, Shi X. Polyethylenimine nanogels integrated with ultrasmall iron oxide nanoparticles and doxorubicin for MR imaging-guided chemotherapy of tumors. Bioconjugate Chem. 2020;31:907–15.

    CAS 
    Article 

    Google Scholar
     

  • 62.

    Singh N, Millot N, Maurizi L, Lizard G, Kumar R. Taurine-conjugated mussel-inspired iron oxide nanoparticles with an elongated form for efficient supply of doxorubicin into the tumor cells. ACS Omega. 2020;5:16165–75.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 63.

    Popescu R, Savu D, Dorobantu I, Vasile B, Hosser H, Boldeiu A, Temelie M, Straticiuc M, Iancu D, Andronescu E. Environment friendly uptake and retention of iron oxide-based nanoparticles in HeLa cells results in an efficient intracellular supply of doxorubicin. Sci Rep. 2020;10:1–10.

    Article 
    CAS 

    Google Scholar
     

  • 64.

    Fang C, Cen D, Wang Y, Wu Y, Cai X, Li X, Han G. ZnS@ ZIF-8 core-shell nanoparticles integrated with ICG and TPZ to allow H2S-amplified synergistic remedy. Theranostics. 2020;10:7671.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 65.

    Tang X-l, Jing F, Lin B-l, Cui S, Yu R-t, Shen X-d, Wang T-w. pH-responsive magnetic mesoporous silica-based nanoplatform for synergistic photodynamic remedy/chemotherapy. ACS Appl Mater Interfaces. 2018;10:15001–11.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 66.

    Wang D, Li X, Li X, Kang A, Solar L, Solar M, Yang F, Xu C. Magnetic and pH dual-responsive nanoparticles for synergistic drug-resistant breast most cancers chemo/photodynamic remedy. Int J Nanomed. 2019;14:7665.

    CAS 
    Article 

    Google Scholar
     

  • 67.

    Luo X, Zhang J, Wu Y-P, Yang X, Kuang X-P, Li W-X, Li Y-F, He R-R, Liu M. Multifunctional HNT@Fe3O4@PPy@DOX nanoplatform for efficient chemo-photothermal mixture remedy of breast most cancers with MR imaging. ACS Biomater Sci Eng. 2020;6:3361–74.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • RELATED ARTICLES

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    Most Popular

    Recent Comments