Zhang, H. et al. An ultrabright and monochromatic electron level supply fabricated from a LaB6 nanowire. Nat. Nanotechnol. 11, 273–279 (2016).
De Jonge, N., Lamy, Y., Schoots, Okay. & Oosterkamp, T. Excessive brightness electron beam from a multi-walled carbon nanotube. Nature 420, 393–395 (2002).
Williams, D. & Carter, C. Transmission Electron Microscopy: A Textbook for Supplies Science Vol. 1 (Springer, 2009).
Swanson, L. & Schwind, G. A evaluate of the cold-field electron cathode. Adv. Imaging Electron Phys. 159, 63–100 (2009).
Cho, B., Ichimura, T., Shimizu, R. & Oshima, C. Quantitative analysis of spatial coherence of the electron beam from low temperature area emitters. Phys. Rev. Lett. 92, 246103 (2004).
Fink, H., Stocker, W. & Schmid, H. Holography with low-energy electrons. Phys. Rev. Lett. 65, 1204–1206 (1990).
Gadzuk, J. & Plummer, E. Area emission vitality distribution (FEED). Rev. Mod. Phys. 45, 487–548 (1973).
Krivanek, O. et al. Atom-by-atom structural and chemical evaluation by annular dark-field electron microscopy. Nature 464, 571–574 (2010).
Haruta, M. & Kurata, H. Direct commentary of crystal defects in an natural molecular crystals of copper hexachlorophthalocyanine by STEM-EELS. Sci. Rep. 2, 252 (2012).
Crewe, A., Wall, J. & Langmore, J. Visibility of single atoms. Science 168, 1338–1340 (1970).
Binh, V., Purcell, S., Garcia, N. & Doglioni, J. Area emission electron spectroscopy of single-atom ideas. Phys. Rev. Lett. 69, 2527–2530 (1992).
Diehl, R. et al. Slim vitality distributions of electrons emitted from clear graphene edges. Phys. Rev. B. 102, 035416 (2020).
Chang, C., Kuo, H., Hwang, I. & Tsong, T. A totally coherent electron beam from a noble-metal coated W(111) single-atom emitter. Nanotechnology 20, 115401 (2009).
Tafel, A., Meier, S., Ristein, J. & Hommelhoff, P. Femtosecond laser-induced electron emission from nanodiamond-coated tungsten needle ideas. Phys. Rev. Lett. 123, 146802 (2019).
Nakahara, H., Ichikawa, S., Ochiai, T., Kusano, Y. & Saito, Y. Carbon nanotube electron supply for area emission scanning electron microscopy. e-J. Surf. Sci. Nanotechnol. 9, 400–403 (2011).
Mamishin, S., Kubo, Y., Cours, R., Monthioux, M. & Houdellier, F. 200 keV chilly area emission supply utilizing carbon cone nanotip: software to scanning transmission electron microscopy. Ultramicroscopy 182, 303–307 (2017).
Zhang, H., Tang, J., Yuan, J. & Qin, L. C. Ultrabright and monochromatic nanowire electron sources. MRS Bull. 42, 511–517 (2017).
Zhao, P. et al. A common technique to weld particular person one-dimensional nanostructures with a tungsten needle based mostly on synergy of the electron beam and electrical present. Nanomaterials 10, 469 (2020).
Miyazaki, H. T., Miyazaki, H., Ohtaka, Okay. & Sato, T. Photonic band in two-dimensional lattices of micrometer-sized spheres mechanically organized beneath a scanning electron microscope. J. Appl. Phys. 87, 7152–7158 (2000).
Aoki, Okay. et al. Microassembly of semiconductor three-dimensional photonic crystals. Nat. Mater. 2, 117–121 (2003).
Houdellier, F., Masseboeuf, A., Monthioux, M. & Hytch, M. New carbon cone nanotip to be used in a extremely coherent chilly area emission electron microscope. Carbon 50, 2037–2044 (2012).
Warren, B. X-Ray Diffraction (Dover Publications, 2012).
Ishizuka, Okay. Distinction switch of crystal pictures in TEM. Ultramicroscopy 5, 55–65 (1980).
O’Keefe, M. ‘Decision’ in high-resolution electron microscopy. Ultramicroscopy 47, 282–297 (1992).
Kimoto, Okay. et al. Quantitative analysis of temporal partial coherence utilizing 3D Fourier transforms of through-focus TEM pictures. Ultramicroscopy 134, 86–93 (2013).
Morishita, S., Mukai, M., Suenaga, Okay. & Sawada, H. Decision enhancement in transmission electron microscopy with 60-kV monochromated electron supply. Appl. Phys. Lett. 108, 013107 (2016).
Kimoto, Okay., Kurashima, Okay., Nagai, T., Ohwada, M. & Ishizuka, Okay. Evaluation of lower-voltage TEM efficiency utilizing 3D Fourier rework of through-focus collection. Ultramicroscopy 121, 31–37 (2012).
Malis, T., Cheng, S. C. & Egerton, R. F. EELS log‐ratio approach for specimen‐thickness measurement within the TEM. J. Electron Microsc. Tech. 8, 193 (1988).
Koch, C. T. Willpower of Core Construction Periodicity and Level Defect Density alongside Dislocations. PhD thesis, Arizona State Univ. (2002).
Sasaki, T. et al. Analysis of probe measurement in STEM imaging at 30 and 60 kV. Micron 43, 551–556 (2012).
Ishikawa, T., Okunishi, E., Kaneyama, T., Kondo, Y. & Matsumura, S. Aberration corrected electron microscopy enhanced for decrease accelerating voltages. Microsc. Microanal. 21, 1599–1600 (2015).
Yamashita, S. et al. Quantitative annular dark-field imaging of single-layer graphene-II: atomic-resolution picture distinction. Microscopy 64, 409–418 (2015).
Kimoto, Okay. et al. Aspect-selective imaging of atomic columns in a crystal utilizing STEM and EELS. Nature 450, 702–704 (2007).
Swanson, L. & Crouser, L. Complete-energy distribution of field-emitted electrons and single-plane work features for tungsten. Phys. Rev. 163, 622–641 (1967).
Kasuya, Okay., Katagiri, S. & Ohshima, T. Stabilization of a tungsten <310> chilly area emitter. J. Vac. Sci. Technol. B. 28, L55–L60 (2010).
Kasuya, Okay. et al. Monochromatic electron emission from CeB6 (310) chilly area emitter. Appl. Phys. Lett. 117, 213103 (2020).
Kusunoki, T., Hashizume, T., Kasuya, Okay. & Arai, N. Stabilization of cold-field-emission present from a CeB6 single-crystal emitter through the use of a faceted (100) aircraft. J. Vac. Sci. Technol. B. 39, 013202 (2021).
Krivanek, O. et al. Vibrational spectroscopy within the electron microscope. Nature 514, 209–212 (2014).
Hage, F., Radtke, G., Kepaptsoglou, D., Lazzeri, M. & Ramasse, Q. Single-atom vibrational spectroscopy within the scanning transmission electron microscope. Science 367, 1124–1127 (2020).