Saturday, May 18, 2024
HomeNanotechnologyExcessive-endurance micro-engineered LaB6 nanowire electron supply for high-resolution electron microscopy

Excessive-endurance micro-engineered LaB6 nanowire electron supply for high-resolution electron microscopy


  • 1.

    Zhang, H. et al. An ultrabright and monochromatic electron level supply fabricated from a LaB6 nanowire. Nat. Nanotechnol. 11, 273–279 (2016).

    CAS 
    Article 

    Google Scholar
     

  • 2.

    De Jonge, N., Lamy, Y., Schoots, Okay. & Oosterkamp, T. Excessive brightness electron beam from a multi-walled carbon nanotube. Nature 420, 393–395 (2002).

    Article 

    Google Scholar
     

  • 3.

    Williams, D. & Carter, C. Transmission Electron Microscopy: A Textbook for Supplies Science Vol. 1 (Springer, 2009).

  • 4.

    Swanson, L. & Schwind, G. A evaluate of the cold-field electron cathode. Adv. Imaging Electron Phys. 159, 63–100 (2009).

    CAS 
    Article 

    Google Scholar
     

  • 5.

    Cho, B., Ichimura, T., Shimizu, R. & Oshima, C. Quantitative analysis of spatial coherence of the electron beam from low temperature area emitters. Phys. Rev. Lett. 92, 246103 (2004).

    CAS 
    Article 

    Google Scholar
     

  • 6.

    Fink, H., Stocker, W. & Schmid, H. Holography with low-energy electrons. Phys. Rev. Lett. 65, 1204–1206 (1990).

    CAS 
    Article 

    Google Scholar
     

  • 7.

    Gadzuk, J. & Plummer, E. Area emission vitality distribution (FEED). Rev. Mod. Phys. 45, 487–548 (1973).

    CAS 
    Article 

    Google Scholar
     

  • 8.

    Krivanek, O. et al. Atom-by-atom structural and chemical evaluation by annular dark-field electron microscopy. Nature 464, 571–574 (2010).

    CAS 
    Article 

    Google Scholar
     

  • 9.

    Haruta, M. & Kurata, H. Direct commentary of crystal defects in an natural molecular crystals of copper hexachlorophthalocyanine by STEM-EELS. Sci. Rep. 2, 252 (2012).

    Article 

    Google Scholar
     

  • 10.

    Crewe, A., Wall, J. & Langmore, J. Visibility of single atoms. Science 168, 1338–1340 (1970).

    CAS 
    Article 

    Google Scholar
     

  • 11.

    Binh, V., Purcell, S., Garcia, N. & Doglioni, J. Area emission electron spectroscopy of single-atom ideas. Phys. Rev. Lett. 69, 2527–2530 (1992).

    CAS 
    Article 

    Google Scholar
     

  • 12.

    Diehl, R. et al. Slim vitality distributions of electrons emitted from clear graphene edges. Phys. Rev. B. 102, 035416 (2020).

    CAS 
    Article 

    Google Scholar
     

  • 13.

    Chang, C., Kuo, H., Hwang, I. & Tsong, T. A totally coherent electron beam from a noble-metal coated W(111) single-atom emitter. Nanotechnology 20, 115401 (2009).

    Article 

    Google Scholar
     

  • 14.

    Tafel, A., Meier, S., Ristein, J. & Hommelhoff, P. Femtosecond laser-induced electron emission from nanodiamond-coated tungsten needle ideas. Phys. Rev. Lett. 123, 146802 (2019).

    CAS 
    Article 

    Google Scholar
     

  • 15.

    Nakahara, H., Ichikawa, S., Ochiai, T., Kusano, Y. & Saito, Y. Carbon nanotube electron supply for area emission scanning electron microscopy. e-J. Surf. Sci. Nanotechnol. 9, 400–403 (2011).

    CAS 
    Article 

    Google Scholar
     

  • 16.

    Mamishin, S., Kubo, Y., Cours, R., Monthioux, M. & Houdellier, F. 200 keV chilly area emission supply utilizing carbon cone nanotip: software to scanning transmission electron microscopy. Ultramicroscopy 182, 303–307 (2017).

    CAS 
    Article 

    Google Scholar
     

  • 17.

    Zhang, H., Tang, J., Yuan, J. & Qin, L. C. Ultrabright and monochromatic nanowire electron sources. MRS Bull. 42, 511–517 (2017).

    CAS 
    Article 

    Google Scholar
     

  • 18.

    Zhao, P. et al. A common technique to weld particular person one-dimensional nanostructures with a tungsten needle based mostly on synergy of the electron beam and electrical present. Nanomaterials 10, 469 (2020).

    CAS 
    Article 

    Google Scholar
     

  • 19.

    Miyazaki, H. T., Miyazaki, H., Ohtaka, Okay. & Sato, T. Photonic band in two-dimensional lattices of micrometer-sized spheres mechanically organized beneath a scanning electron microscope. J. Appl. Phys. 87, 7152–7158 (2000).

    CAS 
    Article 

    Google Scholar
     

  • 20.

    Aoki, Okay. et al. Microassembly of semiconductor three-dimensional photonic crystals. Nat. Mater. 2, 117–121 (2003).

    CAS 
    Article 

    Google Scholar
     

  • 21.

    Houdellier, F., Masseboeuf, A., Monthioux, M. & Hytch, M. New carbon cone nanotip to be used in a extremely coherent chilly area emission electron microscope. Carbon 50, 2037–2044 (2012).

    CAS 
    Article 

    Google Scholar
     

  • 22.

    Warren, B. X-Ray Diffraction (Dover Publications, 2012).

  • 23.

    Ishizuka, Okay. Distinction switch of crystal pictures in TEM. Ultramicroscopy 5, 55–65 (1980).

    CAS 
    Article 

    Google Scholar
     

  • 24.

    O’Keefe, M. ‘Decision’ in high-resolution electron microscopy. Ultramicroscopy 47, 282–297 (1992).

    Article 

    Google Scholar
     

  • 25.

    Kimoto, Okay. et al. Quantitative analysis of temporal partial coherence utilizing 3D Fourier transforms of through-focus TEM pictures. Ultramicroscopy 134, 86–93 (2013).

    CAS 
    Article 

    Google Scholar
     

  • 26.

    Morishita, S., Mukai, M., Suenaga, Okay. & Sawada, H. Decision enhancement in transmission electron microscopy with 60-kV monochromated electron supply. Appl. Phys. Lett. 108, 013107 (2016).

    Article 

    Google Scholar
     

  • 27.

    Kimoto, Okay., Kurashima, Okay., Nagai, T., Ohwada, M. & Ishizuka, Okay. Evaluation of lower-voltage TEM efficiency utilizing 3D Fourier rework of through-focus collection. Ultramicroscopy 121, 31–37 (2012).

    CAS 
    Article 

    Google Scholar
     

  • 28.

    Malis, T., Cheng, S. C. & Egerton, R. F. EELS log‐ratio approach for specimen‐thickness measurement within the TEM. J. Electron Microsc. Tech. 8, 193 (1988).

    CAS 
    Article 

    Google Scholar
     

  • 29.

    Koch, C. T. Willpower of Core Construction Periodicity and Level Defect Density alongside Dislocations. PhD thesis, Arizona State Univ. (2002).

  • 30.

    Sasaki, T. et al. Analysis of probe measurement in STEM imaging at 30 and 60 kV. Micron 43, 551–556 (2012).

    CAS 
    Article 

    Google Scholar
     

  • 31.

    Ishikawa, T., Okunishi, E., Kaneyama, T., Kondo, Y. & Matsumura, S. Aberration corrected electron microscopy enhanced for decrease accelerating voltages. Microsc. Microanal. 21, 1599–1600 (2015).

    Article 

    Google Scholar
     

  • 32.

    Yamashita, S. et al. Quantitative annular dark-field imaging of single-layer graphene-II: atomic-resolution picture distinction. Microscopy 64, 409–418 (2015).

    CAS 
    Article 

    Google Scholar
     

  • 33.

    Kimoto, Okay. et al. Aspect-selective imaging of atomic columns in a crystal utilizing STEM and EELS. Nature 450, 702–704 (2007).

    CAS 
    Article 

    Google Scholar
     

  • 34.

    Swanson, L. & Crouser, L. Complete-energy distribution of field-emitted electrons and single-plane work features for tungsten. Phys. Rev. 163, 622–641 (1967).

    CAS 
    Article 

    Google Scholar
     

  • 35.

    Kasuya, Okay., Katagiri, S. & Ohshima, T. Stabilization of a tungsten <310> chilly area emitter. J. Vac. Sci. Technol. B. 28, L55–L60 (2010).

    CAS 
    Article 

    Google Scholar
     

  • 36.

    Kasuya, Okay. et al. Monochromatic electron emission from CeB6 (310) chilly area emitter. Appl. Phys. Lett. 117, 213103 (2020).

    CAS 
    Article 

    Google Scholar
     

  • 37.

    Kusunoki, T., Hashizume, T., Kasuya, Okay. & Arai, N. Stabilization of cold-field-emission present from a CeB6 single-crystal emitter through the use of a faceted (100) aircraft. J. Vac. Sci. Technol. B. 39, 013202 (2021).

    CAS 
    Article 

    Google Scholar
     

  • 38.

    Krivanek, O. et al. Vibrational spectroscopy within the electron microscope. Nature 514, 209–212 (2014).

    CAS 
    Article 

    Google Scholar
     

  • 39.

    Hage, F., Radtke, G., Kepaptsoglou, D., Lazzeri, M. & Ramasse, Q. Single-atom vibrational spectroscopy within the scanning transmission electron microscope. Science 367, 1124–1127 (2020).

    CAS 
    Article 

    Google Scholar
     

  • RELATED ARTICLES

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    Most Popular

    Recent Comments