Saturday, December 2, 2023
HomeNanotechnologyAdvances and insights within the prognosis of viral infections | Journal of...

Advances and insights within the prognosis of viral infections | Journal of Nanobiotechnology


  • 1.

    Rojek A, Horby P, Dunning J. Insights from scientific analysis accomplished in the course of the west Africa Ebola virus illness epidemic. Lancet Infect Dis. 2017;17:e280-92.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 2.

    Valleron AJ, Meurisse S, Boelle PY. Historic Evaluation of the 1889–1890 Pandemic in Europe. Int J Infect Dis. 2008;12:e95.

    Article 

    Google Scholar
     

  • 3.

    Kempińska BM, Woźniak AK. The influenza epidemic of 1889–90 in chosen European cities—an image primarily based on the reviews of two Poznań every day newspapers from the second half of the nineteenth century. Med Sci Monit. 2013;19:1131–41.

    Article 

    Google Scholar
     

  • 4.

    Trilla A, Trilla G, Daer C. The 1918 “Spanish Flu” in Spain. Clin Infect Dis. 2008. https://doi.org/10.1086/590567.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 5.

    Guan Y, Vijaykrishna D, Bahl J, Zhu H, Wang J, Smith GJD. Mini-review. The emergence of pandemic influenza viruses. Protein Cell. 2010;1:9–13.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 6.

    Cohen MS, Hellmann N, Levy JA, Decock Ok, Lange J. The unfold, remedy, and prevention of HIV-1: evolution of a world pandemic. J Clin Investig. 2008;118:1244–54.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 7.

    Cucinotta D, Vanelli M. WHO declares COVID-19 a pandemic. Acta Biomed. 2020;91:157–60. https://doi.org/10.7326/M20-0504.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 8.

    Halkitis PN. Managing the COVID-19 pandemic: biopsychosocial classes gleaned from the AIDS epidemic. J Public Well being Manag Pract. 2021;27:S39-42. https://doi.org/10.1097/PHH.0000000000001267.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 9.

    Velavan TP, Meyer CG. The COVID-19 epidemic. Trop Med Int Well being. 2020;25:278–80.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 10.

    Gorbalenya AE, Baker SC, Baric RS, de Groot RJ, Drosten C, Gulyaeva AA, et al. The species Extreme acute respiratory syndrome-related coronavirus: classifying 2019-nCoV and naming it SARS-CoV-2. Nat Microbiol. 2020. https://doi.org/10.1038/s41564-020-0695-z.

    Article 

    Google Scholar
     

  • 11.

    Taubenberger JK, Morens DM, Fauci AS. The subsequent influenza pandemic: can it’s predicted? J Am Med Assoc. 2007;297:2025–7.

    CAS 
    Article 

    Google Scholar
     

  • 12.

    Valleron AJ, Cori A, Valtat S, Meurisse S, Carrat F, Boëlle PY. Transmissibility and geographic unfold of the 1889 influenza pandemic. Proc Natl Acad Sci USA. 2010;107:8778–81.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 13.

    Vijgen L, Keyaerts E, Moës E, Thoelen I, Wollants E, Lemey P, et al. Full genomic sequence of human coronavirus OC43: molecular clock evaluation suggests a comparatively current zoonotic coronavirus transmission occasion. J Virol. 2005;79:1595–604.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 14.

    Mulder J, Masurel N. Pre-epidemic antibody in opposition to 1957, pressure of Asiatic influenza in serum of older individuals residing within the Netherlands. Lancet. 1958;1:810–4.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 15.

    Noor R, Maniha SM. A short define of respiratory viral illness outbreaks: 1889–until date on the general public well being views. Virusdisease. 2020;31:441–9. https://doi.org/10.1007/s13337-020-00628-5.

    Article 
    PubMed Central 

    Google Scholar
     

  • 16.

    Ryan JR. Pandemic influenza: emergency planning and group preparedness. 2008.

  • 17.

    Oxford JS, Lambkin R, Sefton A, Daniels R, Elliot A, Brown R, et al. A speculation: The conjunction of troopers, fuel, pigs, geese, geese and horses in Northern France in the course of the Nice Battle offered the situations for the emergence of the “Spanish” influenza pandemic of 1918–1919. Vaccine. 2005;23:940–5.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 18.

    Barry JM. The positioning of origin of the 1918 influenza pandemic and its public well being implications. J Transl Med. 2004. https://doi.org/10.1186/1479-5876-2-3.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 19.

    Worobey M, Cox J, Gill D. The origins of the good pandemic. Evol Med Public Well being. 2019;2019:18–25.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 20.

    Wertheim JO. The re-emergence of H1N1 influenza virus in 1977: a cautionary story for estimating divergence occasions utilizing biologically unrealistic sampling dates. PLoS ONE. 2010;5:e11184. https://doi.org/10.1371/journal.pone.0011184.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 21.

    Taubenberger JK. The origin and virulence of the 1918 “Spanish” influenza virus. Proc Am Philos Soc. 2006;150:86–112.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 22.

    Bosch A, Sánchez G, Abbaszadegan M, Carducci A, Guix S, le Guyader FS, et al. Analytical strategies for virus detection in water and meals. Meals Anal Strategies. 2011;4:4–12. https://doi.org/10.1007/s12161-010-9161-5.

    Article 

    Google Scholar
     

  • 23.

    Mahapatra S, Chandra P. Clinically practiced and commercially viable nanobio engineered analytical strategies for COVID-19 prognosis. Biosens Bioelectron. 2020;165:112361.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 24.

    Hui DS, Azhar EI, Madani TA, Ntoumi F, Kock R, Dar O, et al. The persevering with 2019-nCoV epidemic risk of novel coronaviruses to international well being—the most recent 2019 novel coronavirus outbreak in Wuhan, China. Int J Infect Dis. 2020;91:264–6.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 25.

    Sheridan C. Quick, transportable assessments come on-line to curb coronavirus pandemic. Nat Biotechnol. 2020;38:515–8.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 26.

    van Elslande J, Houben E, Depypere M, Brackenier A, Desmet S, André E, et al. Diagnostic efficiency of seven speedy IgG/IgM antibody assessments and the Euroimmun IgA/IgG ELISA in COVID-19 sufferers. Clin Microbiol Infect. 2020;26:1082–7.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • 27.

    Broughton JP, Deng X, Yu G, Fasching CL, Servellita V, Singh J, et al. CRISPR–Cas12-based detection of SARS-CoV-2. Nat Biotechnol. 2020;38:870–4. https://doi.org/10.1038/s41587-020-0513-4.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 28.

    Wang X, Shang X, Huang X. Subsequent-generation pathogen prognosis with CRISPR/ Cas-based detection strategies Subsequent-generation pathogen prognosis with CRISPR/Cas-based detection strategies. Emerg Microb Infect. 2020. https://doi.org/10.1080/22221751.2020.1793689.

    Article 

    Google Scholar
     

  • 29.

    Steininger C, Kundi M, Aberle SW, Aberle JH, Popow-Kraupp T. Effectiveness of reverse transcription-PCR, virus isolation, and enzyme-linked immunosorbent assay for prognosis of influenza A virus an infection in numerous age teams. J Clin Microbiol. 2002;40:2051–6.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 30.

    Dawson WO, Beck DL, Knorr DA, Grantham GL. cDNA cloning of the whole genome of tobacco mosaic virus and manufacturing of infectious transcripts. Proc Natl Acad Sci USA. 1986;83:1832–6.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 31.

    Khan MZH, Hasan MR, Hossain SI, Ahommed MS, Daizy M. Ultrasensitive detection of pathogenic viruses with electrochemical biosensor: cutting-edge. Biosens Bioelectron. 2020;166:112431.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 32.

    Ramanaviciene A, Ramanavicius A. Pulsed amperometric detection of DNA with an ssDNA/polypyrrole-modified electrode. Anal Bioanal Chem. 2004;379:287–93. https://doi.org/10.1007/s00216-004-2573-6.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 33.

    Dronina J, Bubniene US, Ramanavicius A. The applying of DNA polymerases and Cas9 as consultant of DNA-modifying enzymes group in DNA sensor design (assessment). Biosen Bioelectron. 2020;175:112867.

    Article 
    CAS 

    Google Scholar
     

  • 34.

    Ratautaite V, Topkaya SN, Mikoliunaite L, Ozsoz M, Oztekin Y, Ramanaviciene A, et al. Molecularly imprinted polypyrrole for DNA dedication. Electroanalysis. 2013;25:1169–77. https://doi.org/10.1002/elan.201300063.

    CAS 
    Article 

    Google Scholar
     

  • 35.

    Threats I of M (US) F on M. Detection and Diagnostics. Nationwide Academies Press (US); 2007.

  • 36.

    Lengthy C, Xu H, Shen Q, Zhang X, Fan B, Wang C, et al. Prognosis of the Coronavirus illness (COVID-19): rRT-PCR or CT? Eur J Radiol. 2020;126:108961.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 37.

    Brunese L, Mercaldo F, Reginelli A, Santone A. Explainable deep studying for pulmonary illness and Coronavirus COVID-19 detection from X-rays. Comput Strategies Packages Biomed. 2020;196:105608.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 38.

    Fang Y, Zhang H, Xie J, Lin M, Ying L, Pang P, et al. Sensitivity of chest CT for COVID-19: comparability to RT-PCR. Radiology. 2020;296:E115-7. https://doi.org/10.1148/radiol.2020200432.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 39.

    Shimizu YK, Feinstone SM, Kohara M, Purcell RH, Yoshikura H. Hepatitis C virus: Detection of intracellular virus particles by electron microscop. Hepatology. 1996;23:205–9. https://doi.org/10.1002/hep.510230202.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 40.

    Ben-Shmuel A, Brosh-Nissimov T, Glinert I, Bar-David E, Sittner A, Poni R, et al. Detection and infectivity potential of extreme acute respiratory syndrome coronavirus 2 (SARS-CoV-2) environmental contamination in isolation items and quarantine services. Clin Microbiol Infect. 2020;26:1658–62.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 41.

    van Doremalen N, Bushmaker T, Morris DH, Holbrook MG, Gamble A, Williamson BN, et al. Aerosol and floor stability of SARS-CoV-2 as in contrast with SARS-CoV-1. N Engl J Med. 2020;382:1564–7. https://doi.org/10.1056/nejmc2004973.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 42.

    Murphy FA. Epidemiology of viral illnesses. Encycl Virol. 1999; p. 482–7.

  • 43.

    Tahamtan A, Ardebili A. Actual-time RT-PCR in COVID-19 detection: points affecting the outcomes. Skilled Rev Mol Diag. 2020;20:453–4.

    CAS 
    Article 

    Google Scholar
     

  • 44.

    Kim JY, Ko J-H, Kim Y, Kim Y-J, Kim J-M, Chung Y-S, et al. Viral load kinetics of SARS-CoV-2 an infection in first two sufferers in Korea. J Korean Med Sci. 2020. https://doi.org/10.3346/jkms.2020.35.e86.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 45.

    Wang Y, Kang H, Liu X, Tong Z. Mixture of RT-qPCR testing and scientific options for prognosis of COVID-19 facilitates administration of SARS-CoV-2 outbreak. J Med Virol. 2020;92:538–9. https://doi.org/10.1002/jmv.25721.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 46.

    Meo SA, Alhowikan AM, Khlaiwi TAL, Meo IM, Halepoto DM, Iqbal M, et al. Novel coronavirus 2019-nCoV: prevalence, organic and scientific traits comparability with SARS-CoV and MERS-CoV. Eur Rev Med Pharmacol Sci. 2020;24:2012–9.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 47.

    Cucinotta D, Vanelli M. WHO declares COVID-19 a pandemic. Acta Biomedica. 1885;2020(91):157–60.


    Google Scholar
     

  • 48.

    Lei S, Jiang F, Su W, Chen C, Chen J, Mei W, et al. Medical traits and outcomes of sufferers present process surgical procedures in the course of the incubation interval of COVID-19 an infection. EClinicalMedicine. 2020;21:100331.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 49.

    Lauer SA, Grantz KH, Bi Q, Jones FK, Zheng Q, Meredith HR, et al. The incubation interval of coronavirus illness 2019 (CoVID-19) from publicly reported confirmed circumstances: estimation and software. Ann Int Med. 2020;172:577–82. https://doi.org/10.7326/M20-0504.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 50.

    Gao Y, Shi C, Chen Y, Shi P, Liu J, Xiao Y, et al. A cluster of the Corona Virus Illness 2019 brought on by incubation interval transmission in Wuxi, China. J Infect. 2020;80:666–70.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 51.

    Gussow AB, Auslander N, Wolf YI, Koonin E. Prediction of the incubation interval for COVID-19 and future virus illness outbreaks. BMC Biol. 2020;18:1–12. https://doi.org/10.1186/s12915-020-00919-9.

    CAS 
    Article 

    Google Scholar
     

  • 52.

    Bara J, Rapti Z, Cáceres CE, Muturi EJ. Impact of larval competitors on extrinsic incubation interval and vectorial capability of Aedes albopictus for dengue virus. PLoS ONE. 2015;10:e0126703. https://doi.org/10.1371/journal.pone.0126703.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 53.

    Nishiura H, Halstead SB. Pure historical past of dengue virus (DENV)–1 and DENV-4 infections: reanalysis of basic research. J Infect Dis. 2007;195:1007–13. https://doi.org/10.1086/511825.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 54.

    Tjaden NB, Thomas SM, Fischer D, Beierkuhnlein C. Extrinsic Incubation interval of dengue: data, backlog, and functions of temperature dependence. PLoS Negl Trop Dis. 2013;7:e2207. https://doi.org/10.1371/journal.pntd.0002207.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 55.

    Chan M, Johansson MA. The incubation durations of dengue viruses. PLoS ONE. 2012;7:e50972. https://doi.org/10.1371/journal.pone.0050972.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 56.

    Krow-Lucal ER, Biggerstaff BJ, Staples JE. Estimated incubation interval for zika virus illness. Emerg Infect Dis. 2017;23:841–4.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 57.

    Lessler J, Ott CT, Carcelen AC, Konikoff JM, Williamson J, Bi Q, et al. Instances to key occasions in Zika virus an infection and implications for blood donation: a scientific assessment. Bull World Well being Org. 2016;94:841–9.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 58.

    Fourié T, Grard G, Leparc-Goffart I, Briolant S, Fontaine A. Variability of Zika Virus incubation interval in people. Open Discussion board Infect Dis. 2018. https://doi.org/10.1093/ofid/ofy261/5128777.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 59.

    Aziz H, Zia A, Anwer A, Aziz M, Fatima S, Faheem M. Zika virus: international well being problem, risk and present scenario. J Med Virol. 2017;89:943–51. https://doi.org/10.1002/jmv.24731.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 60.

    Eichner M, Dowell SF, Firese N. Incubation interval of ebola hemorrhagic virus subtype Zaire. Osong Public Well being Res Perspect. 2011;2:3–7.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 61.

    Haas CN. On the quarantine interval for ebola virus. PLoS Curr. 2014;6. /pmc/articles/PMC4205154/?report=summary

  • 62.

    Dixon MG, Schafer IJ. Ebola viral illness outbreak—West Africa, 2014. Ann Emerg Med. 2015; p. 114–5. http://who.int/csr/

  • 63.

    Kadanali A. An outline of Ebola virus illness. North Clin Istanbul. 2016;2:81.


    Google Scholar
     

  • 64.

    Koff RS. Medical manifestations and prognosis of hepatitis A virus an infection. Vaccine. 1992;10:S15–7.

    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 65.

    Prince AM. An antigen detected within the blood in the course of the incubation interval of serum hepatitis. Proc Natl Acad Sci USA. 1968;60:814–21.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 66.

    Chang MH. Hepatitis B virus an infection. Semin Fetal Neonatal Med. 2007;12:160–7.

    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 67.

    Mahoney FJ. Replace on prognosis, administration, and prevention of hepatitis B virus an infection. Clin Microbiol Rev. 1999;12:351–66.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 68.

    Liang TJ. Hepatitis B: The virus and illness. Hepatology. 2009;49:S13-21. https://doi.org/10.1002/hep.22881.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 69.

    Juszczyk J. Medical course and penalties of hepatitis B an infection. Vaccine. 2000;18:S23–5.

    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 70.

    Villeneuve JP. The pure historical past of power hepatitis B virus an infection. J Clin Virol. 2005;34:S139–42.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 71.

    Vos LM, Bruning AHL, Reitsma JB, Schuurman R, Riezebos-Brilman A, Hoepelman AIM, et al. Fast molecular assessments for influenza, respiratory syncytial virus, and different respiratory viruses: a scientific assessment of diagnostic accuracy and scientific influence research. Clin Infect Dis. 2019;69:1243–53.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 72.

    Ivanowski D. Ueber die mosaikkrankheit der tabakspflanze. St Petersb Acad Imp Sci Bul. 1892;35:67–70.


    Google Scholar
     

  • 73.

    Mayer A. Über die Mosaikkrankheit des Tabaks. Die Landwirtschaftliche Versuchs-stationen. 1886;32:451–67.


    Google Scholar
     

  • 74.

    Harrison BD, Wilson TMA. Milestones within the analysis on tobacco mosaic virus. Royal Soc. 1999;354:521–9.

    CAS 

    Google Scholar
     

  • 75.

    Lecoq H. Découverte du premier virus, le virus de la mosaïque du tabac : 1892 ou 1898 ? Comptes Rendus de l’Académie des Sciences – Sequence III – Sciences de la Vie. 2001;324:929–33.

    CAS 

    Google Scholar
     

  • 76.

    Creager ANH, Scholthof KBG, Citovsky V, Scholthof HB. Tobacco mosaic virus: pioneering analysis for a century. Plant Cell. 1999;11:301–8.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 77.

    Ruska E. The event of the electron microscope and of electron microscopy(Nobel Lecture). Angewandte Chemie Worldwide Version in English. 1987;26:595–605. https://doi.org/10.1002/anie.198705953.

    Article 

    Google Scholar
     

  • 78.

    Stanley WM. A crystalline protein with tobacco-mosaic virus properties. Science. 1935;81:644–5.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 79.

    Rifkind D, Freeman GL. Tobacco mosaic virus. The nobel prize successful discoveries in infectious illnesses. Amsterdam: Elsevier; 2005. p. 81–4.

    E-book 

    Google Scholar
     

  • 80.

    Eriksson-Quensel IB, Svedberg T. Sedimentation and electrophoresis of the tobacco-mosaic virus protein. J Am Chem Soc. 1936;58:1863–7. https://doi.org/10.1021/ja01301a010.

    Article 

    Google Scholar
     

  • 81.

    Bawden FC, Pirie NW, Bernal JD, Fankuchen I. Liquid crystalline substances from virus-infected vegetation. Nature. 1936;138:1051–2.

    Article 

    Google Scholar
     

  • 82.

    Debrick KS. Quantitative assay for plant viruses utilizing serologically particular electron microscopy. Virology. 1973;56:652–3.

    Article 

    Google Scholar
     

  • 83.

    Steere RL. Electron microscopy of structural element in frozen organic specimens. J Biophys Biochem Cytol. 1957;3:45–60.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 84.

    Namba Ok, Pattanayek R, Stubbs G. Visualization of protein-nucleic acid interactions in a virus. Refined construction of intact tobacco mosaic virus at 2.9 Å decision by X-ray fiber diffraction. J Mol Biol. 1989;208:307–25.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 85.

    Bloomer AC, Champness JN, Bricogne G, Staden R, Klug A. Protein disk of tobacco mosaic virus at 2.8 Å decision displaying the interactions inside and between subunits. Nature. 1978;276:362–8. https://doi.org/10.1038/276362a0.pdf.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 86.

    Stubbs G, Warren S, Holmes Ok. Construction of RNA and RNA binding website in tobacco mosaic virus from 4-Å map calculated from X-ray fibre diagrams. Nature. 1977;267:216–21.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 87.

    Franklin RE. Construction of tobacco mosaic virus. Nature. 1955;175:379–81. https://doi.org/10.1038/175379a0.pdf.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 88.

    Tsugita A, Gish DT, Younger J, Fraenkel-Conrat H, Knight CA, Stanley WM. The entire amino acid sequence of the protein of tobacco mosaic virus. Proc Natl Acad Sci. 1960;46:1463–9.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 89.

    Anderer FA, Uhlig H, Weber E, Schramm G. Major construction of the protein of tobacco mosaic virus. Nature. 1960;186:922–5. https://doi.org/10.1038/186922a0.pdf.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 90.

    Gallie DR, Sleat DE, Watts JW, Turner PC, Wilson T, Michael A. The 5’-leader sequence of tobacco mosaic virus RNA enhances the expression of international gene transcripts in vitro and in vivo. Nucleic Acids Res. 1987;15:3257–73.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 91.

    Golemboski DB, Lomonossoff GP, Zaitlin M. Crops remodeled with a tobacco mosaic virus nonstructural gene sequence are proof against the virus. Proc Natl Acad Sci USA. 1990;87:6311–5.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 92.

    Goelet P, Lomonossoff GP, Butler PJG, Akam ME, Gait MJ, Karn J. Nucleotide sequence of tobacco mosaic virus RNA. Proc Natl Acad Sci USA. 1982;79:5818–22.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 93.

    Zimmern D. The nucleotide sequence on the origin for meeting on tobacco mosaic virus RNA. Cell Cell Press. 1977;11:463–82.

    CAS 

    Google Scholar
     

  • 94.

    Powell PA, Stark DM, Sanders PR, Beachy RN. Safety in opposition to tobacco mosaic virus in transgenic vegetation that specific tobacco mosaic virus antisense RNA. Proc Natl Acad Sci USA. 1989;86:6949–52.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 95.

    Nelson RS, Abel PP, Beachy RN. Lesions and virus accumulation in inoculated transgenic tobacco vegetation expressing the coat protein gene of tobacco mosaic virus. Virology. 1987;158:126–32.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 96.

    Ruiz JM, Ríos JJ, Rosales MA, Rivero RM, Romero L. Grafting between tobacco vegetation to boost salinity tolerance. J Plant Physiol. 2006;163:1229–37.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 97.

    Arce-Johnson P, Reimann-Philipp U, Padgett HS, Rivera-Bustamante R, Beachy RN. Requirement of the motion protein for lengthy distance unfold of tobacco mosaic virus in grafted vegetation. Mol Plant-Microbe Int. 1997;10:691–9. https://doi.org/10.1094/MPMI.1997.10.6.691.

    CAS 
    Article 

    Google Scholar
     

  • 98.

    Pallas JA, Paiva NL, Lamb C, Dixon RA. Tobacco vegetation epigenetically suppressed in phenylalanine ammonia-lyase expression don’t develop systemic acquired resistance in response to an infection by tobacco mosaic virus. Plant J. 1996;10:281–93. https://doi.org/10.1046/j.1365-313X.1996.10020281.x.

    CAS 
    Article 

    Google Scholar
     

  • 99.

    Kathiria P, Sidler C, Golubov A, Kalischuk M, Kawchuk LM, Kovalchuk I. Tobacco mosaic virus an infection ends in a rise in recombination frequency and resistance to viral, bacterial, and fungal pathogens within the progeny of contaminated tobacco vegetation 1[C][W][OA]. Plant Physiol. 2010;153:1859–70. https://doi.org/10.1104/pp.110.157263.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 100.

    Wisniewski LA, Powell PA, Nelson RS, Beachy RN. Native and systemic unfold of tobacco mosaic virus in transgenic tobacco. Plant Cell. 1990;2:559–67.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 101.

    Roingeard P. Viral detection by electron microscopy: previous, current and future. Biol Cell. 2008;100:491–501. https://doi.org/10.1042/BC20070173.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 102.

    Barreto-Vieira DF, Barth OM. Adverse and optimistic staining in transmission electron microscopy for virus prognosis. Microbiol Agric Hum Well being. 2015. https://doi.org/10.5772/60511.

    Article 

    Google Scholar
     

  • 103.

    Tyrrell DAJ, Almeida JD. Direct electron-microscopy of organ cultures for the detection and characterization of viruses. Archiv für die gesamte Virusforschung. 1967;22:417–25. https://doi.org/10.1007/BF01242962.pdf.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 104.

    Hamm FA. Electron microscopy. Anal Chem. 1950;22:26–30. https://doi.org/10.1021/ac60037a010.

    Article 

    Google Scholar
     

  • 105.

    Swerdlow M, Dalton AJ, Birks LS. Electron microscopy. Anal Chem. 1956;28:597–609. https://doi.org/10.1021/ac60112a007.

    CAS 
    Article 

    Google Scholar
     

  • 106.

    Botty MC, Thomas AM. Electron microscopy. Anal Chem. 1962;34:127R-143R. https://doi.org/10.1021/ac60185a016.

    CAS 
    Article 

    Google Scholar
     

  • 107.

    Hazelton PR, Gelderblom HR. Electron microscopy for speedy prognosis of infectious brokers in emergent conditions. Emerg Infect Dis. 2003;9(3):294.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 108.

    Reid GG, Milne EW, Coggins LW, Wilson NJ, Smith KT, Shepherd AJ. Comparability of electron microscopic strategies for enumeration of endogenous retrovirus in mouse and Chinese language hamster cell strains used for manufacturing of biologics. J Virol Strategies. 2003;108:91–6.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 109.

    Malenovska H. Virus quantitation by transmission electron microscopy, TCID50, and the position of timing virus harvesting: a case examine of three animal viruses. J Virol Strategies. 2013;191:136–40.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 110.

    Zhang Y, van der Schaar M. Status-based incentive protocols in crowdsourcing functions. Proceedings – IEEE INFOCOM. 2012. p. 2140–8.

  • 111.

    Wilson IG. Inhibition and facilitation of nucleic acid amplification. Appl Environ Microbiol. 1997;63:3741–51.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 112.

    Cliver DO, Yeatman J. Ultracentrifugation within the focus and detection of enteroviruses. Appl Environ Microbiol. 1965;13:387–92.

    CAS 
    Article 

    Google Scholar
     

  • 113.

    Prata C, Ribeiro A, Cunha Â, Gomes NCM, Almeida A. Ultracentrifugation as a direct technique to pay attention viruses in environmental waters: Virus-like particle enumeration as a brand new strategy to find out the effectivity of restoration. J Environ Monit. 2012;14:64–70.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 114.

    Victoria M, Guimarães F, Fumian T, Ferreira F, Vieira C, Leite JP, et al. Analysis of an adsorption-elution technique for detection of astrovirus and norovirus in environmental waters. J Virol Strategies. 2009;156:73–6.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 115.

    Fumian TM, Leite JPG, Castello AA, Gaggero A, de Caillou MSL, Miagostovich MP. Detection of rotavirus A in sewage samples utilizing multiplex qPCR and an analysis of the ultracentrifugation and adsorption-elution strategies for virus focus. J Virol Strategies. 2010;170:42–6.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 116.

    Hamza IA, Jurzik L, Stang A, Certain Ok, Überla Ok, Wilhelm M. Detection of human viruses in rivers of a densly-populated space in Germany utilizing a virus adsorption elution technique optimized for PCR analyses. Water Res. 2009;43:2657–68.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 117.

    di Pasquale S, Paniconi M, Auricchio B, Orefice L, Schultz AC, de Medici D. Comparability of various focus strategies for the detection of hepatitis A virus and calicivirus from bottled pure mineral waters. J Virol Strategies. 2010;165:57–63.

    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar
     

  • 118.

    Bishop RF, Davidson GP, Holmes IH, Ruck BJ. Detection of a brand new virus by electron microscopy of fæcal extracts from youngsters with acute gastroenteritis. Lancet. 1974;303:149–51.

    Article 

    Google Scholar
     

  • 119.

    Roingeard P, Raynal P-I, Eymieux S, Blanchard E. Virus detection by transmission electron microscopy: Nonetheless helpful for prognosis and a plus for biosafety. Rev Med Virol. 2019;29:e2019. https://doi.org/10.1002/rmv.2019.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 120.

    Murray Ok, Selleck P, Hooper P, Hyatt A, Gould A, Gleeson L, et al. A morbillivirus that induced deadly illness in horses and people. Science. 1995;268:94–7.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 121.

    Ebrahim GJ. Swine Flu (S-OIV) Pandemic. J Trop Pediatr. 2010;56:1–3. https://doi.org/10.1093/tropej/fmp130.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 122.

    Farndon J. Chook Flu: Every thing it’s essential know. Purple Wheel Weiser; 2006.

  • 123.

    Ryabchikova EI, Value BBS. Ebola and Marburg viruses: a view of an infection utilizing electron microscopy. Columbus: Battelle Press; 2004.


    Google Scholar
     

  • 124.

    Facchetti F, Bugatti M, Drera E, Tripodo C, Sartori E, Cancila V, et al. SARS-CoV2 vertical transmission with adversarial results on the new child revealed by way of built-in immunohistochemical, electron microscopy and molecular analyses of Placenta. EBioMedicine. 2020;59:102951.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 125.

    Lučić V, Förster F, Baumeister W. Structural research by electron tomography: from cells to molecules. Ann Rev Biochem. 2005;74:833–65. https://doi.org/10.1146/annurev.biochem.73.011303.074112.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 126.

    Heider S, Metzner C. Quantitative real-time single particle evaluation of virions. Virology. 2014;462:199–206.

    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar
     

  • 127.

    Ohnesorge FM, Hörber JKH, Häberle W, Czerny CP, Smith DPE, Binnig G. AFM assessment examine on pox viruses and residing cells. Biophys J Biophys Soc. 1997;73:2183–94.

    CAS 
    Article 

    Google Scholar
     

  • 128.

    Wei Z, Mcevoy M, Razinkov V, Polozova A, Li E, Casas-Finet J, et al. Biophysical characterization of influenza virus subpopulations utilizing discipline circulation fractionation and multiangle mild scattering: correlation of particle counts, measurement distribution and infectivity. J Virol Strategies. 2007;144:122–32.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 129.

    Bousse T, Shore DA, Goldsmith CS, Hossain MJ, Jang Y, Davis CT, et al. Quantitation of influenza virus utilizing discipline circulation fractionation and multi-angle mild scattering for quantifying influenza A particles. J Virol Strategies. 2013;193:589–96.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 130.

    Anderson B, Rashid MH, Carter C, Pasternack G, Rajanna C, Revazishvili T, et al. Enumeration of bacteriophage particles. Bacteriophage. 2011;1:86–93. https://doi.org/10.4161/bact.1.2.15456.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 131.

    Kramberger P, Ciringer M, Trancar A, Peterka M. Analysis of nanoparticle monitoring evaluation for complete virus particle dedication. Virol J. 2012;9:1–10. https://doi.org/10.1186/1743-422X-9-265.

    CAS 
    Article 

    Google Scholar
     

  • 132.

    Papanikolaou E, Kontostathi G, Drakopoulou E, Georgomanoli M, Stamateris E, Vougas Ok, et al. Characterization and comparative efficiency of lentiviral vector preparations concentrated by both one-step ultrafiltration or ultracentrifugation. Virus Res. 2013;175:1–11.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 133.

    Weidmann M, Sall AA, Manuguerra JC, Koivogui L, Adjami A, Traoré FF, et al. Quantitative evaluation of particles, genomes and infectious particles in supernatants of haemorrhagic fever virus cell cultures. Virol J. 2011;8:81. https://doi.org/10.1186/1743-422X-8-81.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 134.

    Chao W, Harteneck BD, Liddle JA, Anderson EH, Attwood DT. Mushy X-ray microscopy at a spatial decision higher than 15 nm. Nature. 2005;435:1210–3.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 135.

    Chichón FJ, Rodríguez MJ, Pereiro E, Chiappi M, Perdiguero B, Guttmann P, et al. Cryo X-ray nano-tomography of vaccinia virus contaminated cells. J Struct Biol. 2012;177:202–11.

    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 136.

    Kohno N, Ikezoe J, Johkoh T, Takeuchi N, Tomiyama N, Kido S, et al. Focal organizing pneumonia: CT look. Radiology. 1993;189:119–23. https://doi.org/10.1148/radiology.189.1.8372180.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 137.

    Chung M, Bernheim A, Mei X, Zhang N, Huang M, Zeng X, et al. CT imaging options of 2019 novel coronavirus (2019-NCoV). Radiology. 2020;295:202–7. https://doi.org/10.1148/radiol.2020200230.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 138.

    Deng L, Khan A, Zhou W, Dai Y, Eftekhar M, Chen R, et al. Comply with-up examine of scientific and chest CT scans in confirmed COVID-19 sufferers. Radiol Infect Dis. 2020;7:106–13.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 139.

    Pautrat Ok, Chergui N. SARS-CoV-2 an infection could end in appendicular syndrome: chest CT scan earlier than appendectomy. J Visceral Surg. 2020;157:S63-4.

    CAS 
    Article 

    Google Scholar
     

  • 140.

    Lubner MG, Jones D, Kloke J, Stated A, Pickhardt PJ. CT texture evaluation of the liver for assessing hepatic fibrosis in sufferers with hepatitis C virus. Br J Radiol. 2018;92:20180153. https://doi.org/10.1259/bjr.20180153.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 141.

    Ronot M, Asselah T, Paradis V, Michoux N, Dorvillius M, Baron G, et al. Liver fibrosis in power hepatitis C virus an infection: Differentiating minimal from intermediate fibrosis with perfusion CT. Radiology. 2010;256:135–42. https://doi.org/10.1148/radiol.10091295.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 142.

    Bender WR, Hirshberg A, Coutifaris P, Acker AL, Srinivas SK. Common testing for extreme acute respiratory syndrome coronavirus 2 in 2 Philadelphia hospitals: service prevalence and symptom improvement over 2 weeks. Am J Obstetr GynecolMFM. 2020;2:100226. https://doi.org/10.1016/j.ajogmf.2020.100226.

    Article 

    Google Scholar
     

  • 143.

    Pérez-García F, Pérez-Tanoira R, Romanyk J, Arroyo T, Gómez-Herruz P, Cuadros-González J. Alltest speedy lateral circulation immunoassays is dependable in diagnosing SARS-CoV-2 an infection from 14 days after symptom onset: a potential single-center examine. J Clin Virol. 2020;129:104473.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • 144.

    Moser MR, Bender TR, Margolis HS, Noble GR, Kendal AP, Ritter DG. AN outbreak of influenza aboard a business airliner. Am J Epidemiol. 1979;110:1–6.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 145.

    Monto AS, Gravenstein S, Elliott M, Colopy M, Schweinle J. Medical indicators and signs predicting influenza an infection. Arch Intern Med. 2000;160:3243–7.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 146.

    Ohmit SE, Monto AS. Symptomatic predictors of influenza virus positivity in youngsters in the course of the influenza season. Clin Infect Dis. 2006;43:564–8. https://doi.org/10.1086/506352.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 147.

    Singer EJ, Zorilla C, Fahy-Chandon B, Chi S, Syndulko Ok, Tourtellotte WW. Painful signs reported by ambulatory HIV-infected males in a longitudinal examine. Ache. 1993;54:15–9.

    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 148.

    Brandt C, Zvolensky MJ, Woods SP, Gonzalez A, Safren SA, O’Cleirigh CM. Nervousness signs and problems amongst adults residing with HIV and AIDS: a crucial assessment and integrative synthesis of the empirical literature. Clin Psychol Rev. 2017;51:164–84.

    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 149.

    Coleman CL. Spirituality, psychological well-being, and HIV signs for african people residing with HIV illness. J Assoc Nurses AIDS Care. 1999;10:42–50.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 150.

    Belkin GS, Fleishman JA, Stein MD, Piette J, Mor V. Bodily signs and depressive signs amongst people with HIV an infection. Psychosomatics. 1992;33:416–27.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 151.

    Burack JH, Barrett DC, Stall RD, Chesney MA, Ekstrand ML, Coates TJ. Depressive signs and CD4 lymphocyte decline amongst HIV-infected males. JAMA. 1993;270:2568–73.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 152.

    Schmitt HJ. A managed trial of acyclovir for chickenpox in regular youngsters. Eur J Pediatr. 1992. https://doi.org/10.1056/NEJM199111283252203.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 153.

    Simpson REH. Infectiousness of communicable illnesses within the family (measles, chickenpox, and mumps). Lancet. 1952;2:549–54.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 154.

    Parmet S, Lynm C, Glass RM. Chickenpox. J Am Med Assoc. 2004;291:906.

    CAS 
    Article 

    Google Scholar
     

  • 155.

    Kulski JK, Norval M. Nucleic acid probes in prognosis of viral illnesses of man. Arch Virol. 1985;83:3–15.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 156.

    Tenover FC. Diagnostic deoxyribonucleic acid probes for infectious illnesses. Clin Microbiol Rev. 1988;1:82.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 157.

    Guatelli JC, Gingeras TR, Richman DD. Nucleic acid amplification in vitro: Detection of sequences with low copy numbers and software to prognosis of human immunodeficiency virus sort 1 an infection. Clin Microbiol Rev. 1989;2:217–26.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 158.

    Respess RA, Rayfield MA, Dondero TJ. Laboratory testing and speedy HIV assays: functions for HIV surveillance in hard-to-reach populations. Aids LWW. 2001;15:S49-59.

    Article 

    Google Scholar
     

  • 159.

    Huggett JF, Novak T, Garson JA, Inexperienced C, Morris-Jones SD, Miller RF, et al. Differential susceptibility of PCR reactions to inhibitors: an necessary and unrecognised phenomenon. BMC Res Notes. 2008;1:70. https://doi.org/10.1186/1756-0500-1-70.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 160.

    Brinkman JA, Rahmani MZ, Jones WE, Chaturvedi AK, Hagensee ME. Optimization of PCR primarily based detection of human papillomavirus DNA from urine specimens. J Clin Virol. 2004;29:230–40.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 161.

    Kontanis EJ, Reed FA. Analysis of real-time PCR amplification efficiencies to detect PCR inhibitors. J Forensic Sci. 2006;51:795–804. https://doi.org/10.1111/j.1556-4029.2006.00182.x.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 162.

    Oikarinen S, Tauriainen S, Viskari H, Simell O, Knip M, Virtanen S, et al. PCR inhibition in stool samples in relation to age of infants. J Clin Virol. 2009;44:211–4.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 163.

    Monteiro L, Bonnemaison D, Vekris A, Petry KG, Bonnet J, Vidal R, et al. Advanced polysaccharides as PCR inhibitors in feces: Helicobacter pylori mannequin. J Clin Microbiol. 1997;35:995–8.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 164.

    Schrader C, Schielke A, Ellerbroek L, Johne R. PCR inhibitors—prevalence, properties and removing. J Appl Microbiol. 2012. https://doi.org/10.1111/j.1365-2672.2012.05384.x.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 165.

    Kim CH, Khan M, Morin DE, Hurley WL, Tripathy DN, Kehrli M, et al. Optimization of the PCR for detection of Staphylococcus aureus nuc gene in bovine milk. J Dairy Sci. 2001;84:74–83.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 166.

    Akane A, Matsubara Ok, Nakamura H, Takahashi S, Kimura Ok. Identification of the heme compound copurified with deoxyribonucleic acid (DNA) from bloodstains, a significant inhibitor of polymerase chain response (PCR) amplification. J Forensic Sci. 1994;39:13607.

    Article 

    Google Scholar
     

  • 167.

    Abu Al-Soud W, Rådström P. Results of amplification facilitators on diagnostic PCR within the presence of blood, feces, and meat. J Clin Microbiol. 2000;38:4463–70.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 168.

    Hedman J, Rådström P. Overcoming inhibition in real-time diagnostic PCR. Strategies in Mol Biol. 2013;943:17–48. https://doi.org/10.1007/978-1-60327-353-4_2.

    CAS 
    Article 

    Google Scholar
     

  • 169.

    Elwick Ok, Zeng X, King J, Budowle B, Hughes-Stamm S. Comparative tolerance of two massively parallel sequencing programs to frequent PCR inhibitors. Int J Authorized Med. 2018;132:983–95. https://doi.org/10.1007/s00414-017-1693-4.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 170.

    Sidstedt M, Jansson L, Nilsson E, Noppa L, Forsman M, Rådström P, et al. Humic substances trigger fluorescence inhibition in real-time polymerase chain response. Anal Biochem. 2015;487:30–7.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 171.

    Sidstedt M, Steffen CR, Kiesler KM, Vallone PM, Rådström P, Hedman J. The influence of frequent PCR inhibitors on forensic MPS evaluation. Forensic Sci Int Genet. 2019;40:182–91.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 172.

    Tsai Y-L, Olson BH. Fast technique for separation of bacterial DNA from humic substances in sediments for polymerase chain response. Appl Environ Microbiol. 1992;58:2292–5.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 173.

    Hu Q, Liu Y, Yi S, Huang D. A comparability of 4 strategies for PCR inhibitor removing. Forensic Sci Int Genet. 2015;16:94–7.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 174.

    Eckhart L, Bach J, Ban J, Tschachler E. Melanin binds reversibly to thermostable DNA polymerase and inhibits its exercise. Biochem Biophys Res Commun. 2000;271:726–30.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 175.

    Demeke T, Jenkins GR. Affect of DNA extraction strategies, PCR inhibitors and quantification strategies on real-time PCR assay of biotechnology-derived traits. Anal Bioanaly Chem. 2010. https://doi.org/10.1007/s00216-009-3150-9.

    Article 

    Google Scholar
     

  • 176.

    Alaeddini R. Forensic implications of PCR inhibition—a assessment. Forensic Sci Int Genet. 2012;6:297–305.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 177.

    Bickley J, Quick JK, McDowell DG, Parkes HC. Polymerase chain response (PCR) detection of Listeria monocytogenes in diluted milk and reversal of PCR inhibition brought on by calcium ions. Lett Appl Microbiol. 1996;22:153–8. https://doi.org/10.1111/j.1472-765X.1996.tb01131.x.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 178.

    Saiki R, Scharf S, Faloona F, Mullis Ok, Horn G, Erlich H, et al. Enzymatic amplification of beta-globin genomic sequences and restriction website evaluation for prognosis of sickle cell anemia. Science. 1985;230:1350–4. https://doi.org/10.1126/science.2999980.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 179.

    Saiki R, Gelfand D, Stoffel S, Scharf S, Higuchi R, Horn G, et al. Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science. 1988;239:487–91.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 180.

    Ou C-Y, Kwok S, Mitchell SW, Mack DH, Sninsky JJ, Krebs JW, et al. DNA amplification for direct detection of HIV-1 in DNA of peripheral blood mononuclear cells. Science. 1988;239:295–7.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 181.

    McCune JM, Namikawa R, Shih C-C, Rabin L, Kaneshima H. Suppression of HIV an infection in AZT-treated SCID-hu mice. Science. 1990;247:564–6.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 182.

    Piatak M, Saag MS, Yang LC, Clark SJ, Kappes JC, Luk KC, et al. Excessive ranges of HIV-1 in plasma throughout all levels of an infection decided by aggressive PCR. Science. 1993;259:1749–54.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 183.

    Mahony JB. Detection of respiratory viruses by molecular strategies. Clin Microbiol Rev. 2008;21:716–47.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 184.

    Higuchi R, Fockler C, Dollinger G, Watson R. Kinetic PCR evaluation: Actual-time monitoring of DNA amplification reactions. Bio/Know-how. 1993;11:1026–30.

    CAS 

    Google Scholar
     

  • 185.

    Freeman WM, Walker SJ, Vrana KE. Quantitative RT-PCR: Pitfalls and potential. BioTechniques. 1999. https://doi.org/10.2144/99261rv01.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 186.

    Compton J. PRODUCT REVIEW Nucleic acid sequence-based amplification. Nature. 1991. https://doi.org/10.1038/350091a0.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 187.

    Notomi T, Okayama H, Masubuchi H, Yonekawa T, Watanabe Ok, Amino N, et al. Loop-mediated isothermal amplification of DNA. Nucleic Acids Res. 2000;28:63.

    Article 

    Google Scholar
     

  • 188.

    Matsuda Ok, Yamaguchi A, Taira C, Sueki A, Koeda H, Takagi F, et al. A novel high-speed droplet-polymerase chain response can detect human influenza virus in lower than 30min. Clinica Chimica Acta Elsevier. 2012;413:1742–5.

    CAS 
    Article 

    Google Scholar
     

  • 189.

    Narushima R, Shimazaki T, Takahashi T. Improvement of a real-time reverse-transcription-PCR technique for detection of RD114 virus in canine vaccines. Biologicals. 2011;39:89–93.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 190.

    Kim HJ. Validation of the sensitivities of one-step and two-step reverse-transcription PCR strategies for detection of viral hemorrhagic septicemia virus (VHSV) IVa isolates from cultured olive flounder in Korea. Aquaculture. 2015;448:359–64.

    CAS 
    Article 

    Google Scholar
     

  • 191.

    Muyzer G, de Waal EC, Uitterlinden AG. Profiling of advanced microbial populations by denaturing gradient gel electrophoresis evaluation of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl Environ Microbiol. 1993;59:695–700.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 192.

    Yan L, Peng S, Yan P, Zhou J, Teng Q, Li G, et al. Comparability of real-time reverse transcription loop-mediated isothermal amplification and real-time reverse transcription polymerase chain response for duck Tembusu virus. J Virol Strategies. 2012;182:50–5.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 193.

    Guittré C, Baginski I, le Gall G, Prave M, Trépo C, Cova L. Detection of rabbit haemorrhagic illness virus isolates and sequence comparability of the N-terminus of the capsid protein gene by the polymerase chain response. Res Vet Sci. 1995;58:128–32.

    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 194.

    Hyndman L, Vilcek S, Conner J, Nettleton PF. A novel nested reverse transcription PCR detects bovine viral diarrhoea virus in fluids from aborted bovine fetuses. J Virol Strategies. 1998;71:69–76.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 195.

    van Pelt-Verkuil E, Witt R. Ideas of PCR. Singapore: Springer; 2019. https://doi.org/10.1007/978-981-13-1604-3_5

  • 196.

    Potapov V, Ong JL. Inspecting sources of error in PCR by single-molecule sequencing. PLoS ONE. 2017;12:e0169774. https://doi.org/10.1371/journal.pone.0169774.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 197.

    Bustin SA. INVITED REVIEW Quantification of mRNA utilizing real-time reverse transcription PCR (RT-PCR): traits and issues. J Mol Endocrinol. 2002;29:23–39.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 198.

    Osman F, Hodzic E, Kwon SJ, Wang J, Vidalakis G. Improvement and validation of a multiplex reverse transcription quantitative PCR (RT-qPCR) assay for the speedy detection of Citrus tristeza virus, Citrus psorosis virus, and Citrus leaf blotch virus. J Virol Strategies. 2015;220:64–75.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 199.

    Shen M, Zhou Y, Ye J, Al-Maskri AA, Kang Y, Zeng S, et al. Current advances and views of nucleic acid detection for coronavirus. J Pharm Anal. 2020;10:97–101.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • 200.

    Corral JE, Hoogenboom SA, Kröner PT, Vazquez-Roque MI, Picco MF, Farraye FA, et al. COVID-19 polymerase chain response testing earlier than endoscopy: an financial evaluation. Gastrointest Endosc. 2020;92:524–34.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 201.

    Petrillo S, Carrà G, Bottino P, Zanotto E, de Santis MC, Margaria JP, et al. A novel multiplex qRT-PCR assay to detect SARS-CoV-2 an infection: excessive sensitivity and elevated testing capability. Microorganisms. 2020;8:1064.

    CAS 
    PubMed Central 
    Article 

    Google Scholar
     

  • 202.

    Sohn YJ, Choi JH, Choi YY, Choe YJ, Kim Ok, Kim YK, et al. Effectiveness of trivalent inactivated influenza vaccines in youngsters throughout 2017–2018 season in Korea: comparability of test-negative evaluation by speedy and RT-PCR influenza assessments. Int J Infect Dis. 2020;99:199–203.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 203.

    Sakamaki I, Morinaga Y, Tani H, Takegoshi Y, Fukui Y, Kawasuji H, et al. Monitoring of viral load by RT-PCR induced determination making to proceed ECMO remedy for a affected person with COVID-19. J Infect Chemother. 2020;26:1324–7.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 204.

    Nunes BTD, de Mendonça MHR, de Brito Simith D, Moraes AF, Cardoso CC, Prazeres ITE, et al. Improvement of RT-qPCR and semi-nested RT-PCR assays for molecular prognosis of hantavirus pulmonary syndrome. PLoS Negl Trop Dis. 2019;13:e0007884. https://doi.org/10.1371/journal.pntd.0007884.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 205.

    Zhang J, Nfon C, Tsai CF, Lee CH, Fredericks L, Chen Q, et al. Improvement and analysis of a real-time RT-PCR and a field-deployable RT-insulated isothermal PCR for the detection of Seneca Valley virus. BMC Vet Res. 2019;15:168. https://doi.org/10.1186/s12917-019-1927-4.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 206.

    Chu DKW, Pan Y, Cheng SMS, Hui KPY, Krishnan P, Liu Y, et al. Molecular prognosis of a novel coronavirus (2019-nCoV) inflicting an outbreak of Pneumonia. Clin Chem. 2020;66:549–55.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 207.

    Nakagawa Ok, Lokugamage KG, Makino S. Viral and mobile mRNA translation in Coronavirus-infected cells. Adv Virus Res. 2016;96:165–92.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 208.

    Michel CJ, Mayer C, Poch O, Thompson JD. Characterization of accent genes in coronavirus genomes. Virol J. 2020;17:131. https://doi.org/10.1186/s12985-020-01402-1.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 209.

    Kopecky-Bromberg SA, Martínez-Sobrido L, Frieman M, Baric RA, Palese P. Extreme acute respiratory syndrome Coronavirus Open Studying Body (ORF) 3b, ORF 6, and nucleocapsid proteins operate as interferon antagonists. J Virol. 2007;81:548–57.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 210.

    V’kovski P, Kratzel A, Steiner S, Stalder H, Thiel V. Coronavirus biology and replication: implications for SARS-CoV-2. Nat Rev Microbiol. 2020;19:1–16.


    Google Scholar
     

  • 211.

    Udugama B, Kadhiresan P, Kozlowski HN, Malekjahani A, Osborne M, Li VYC, et al. Diagnosing COVID-19: the illness and instruments for detection. ACS Nano. 2020. https://doi.org/10.1021/acsnano.0c02624.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 212.

    Yan Y, Chang L, Wang L. Laboratory testing of SARS-CoV, MERS-CoV, and SARS-CoV-2 (2019-nCoV): present standing, challenges, and countermeasures. Rev Med Virol. 2020;30:e2106. https://doi.org/10.1002/rmv.2106.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 213.

    Bestle D, Heindl MR, Limburg H, van Lam van T, Pilgram O, Moulton H, et al. TMPRSS2 and furin are each important for proteolytic activation of SARS-CoV-2 in human airway cells. Life Sci Alliance. 2020. https://doi.org/10.26508/lsa.202000786.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 214.

    Bu J, Deng Z, Liu H, Li J, Wang D, Yang Y, et al. Present strategies and prospects of coronavirus detection. Talanta. 2021;225:121977.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 215.

    Li Y, Li J, Zhang Y, Dai L, Li L, Liu J, et al. Improvement of an computerized built-in gene detection system for novel extreme acute respiratory syndrome-related coronavirus (SARS-CoV2). Emerg Microb Infect. 2020;9:1489–96. https://doi.org/10.1080/22221751.2020.1782774.

    CAS 
    Article 

    Google Scholar
     

  • 216.

    Wang P. Mixture of serological complete antibody and RT-PCR take a look at for detection of SARS-COV-2 infections. J Virol Strategies. 2020;283:113919.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 217.

    Corman VM, Landt O, Kaiser M, Molenkamp R, Meijer A, Chu DK, et al. Detection of 2019 novel coronavirus (2019-nCoV) by real-time RT-PCR. Eurosurveillance. 2020;25:2000045. https://doi.org/10.2807/1560-7917.ES.2020.25.3.2000045.

    Article 
    PubMed Central 

    Google Scholar
     

  • 218.

    Liu HJ, Lee LH, Shih WL, Lin MY, Liao MH. Detection of infectious bronchitis virus by multiplex polymerase chain response and sequence evaluation. J Virol Strategies. 2003;109:31–7.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 219.

    Zhang H, Miller BL. Immunosensor-based label-free and multiplex detection of influenza viruses: Cutting-edge. Biosensors and Bioelectronics. Elsevier Ltd; 2019. p. 111476.

  • 220.

    Zhao JJ, Cheng D, Li N, Solar Y, Shi Z, Zhu QH, et al. Analysis of a multiplex real-time RT-PCR for quantitative and differential detection of wild-type viruses and C-strain vaccine of Classical swine fever virus. Vet Microbiol. 2008;126:1–10.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 221.

    Luan J, Yuan J, Li X, Jin S, Yu L, Liao M, et al. Multiplex detection of 60 Hepatitis B Virus variants by MALDI-TOF mass spectrometry. Clin Chem. 2009;55(8):1503–9.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 222.

    Bell NM, Lever AML. HIV Gag polyprotein: processing and early viral particle meeting. Traits Microbiol. 2013;21:136–44.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 223.

    Corti D, Langedijk JPM, Hinz A, Seaman MS, Vanzetta F, Fernandez-Rodriguez BM, et al. Evaluation of Reminiscence B Cell Responses and Isolation of Novel Monoclonal Antibodies with Neutralizing Breadth from HIV-1-Contaminated People. PLoS ONE. 2010;5:e8805.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • 224.

    Zhang W, Evans DH. Detection and identification of human influenza viruses by the polymerase chain response. J Virol Strategies. 1991;33:165–89.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 225.

    Collins RA, Ko LS, Fung KY, Chan KY, Xing J, Lau LT, et al. Fast and delicate detection of avian influenza virus subtype H7 utilizing NASBA. Biochem Biophys Res Commun. 2003;300:507–15.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 226.

    Chomczynski P, Sacchi N. Single-step technique of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem. 1987;162:156–9.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 227.

    Starick E, Romer-Oberdorfer A, Werner O. Sort- and subtype-specific RT-PCR assays for Avian Influenza A Viruses (AIV). J Vet Med Ser B. 2000;47:295–301. https://doi.org/10.1046/j.1439-0450.2000.00386.x.

    CAS 
    Article 

    Google Scholar
     

  • 228.

    Donofrio JC, Donald Coonrod J, Davidson JN, Betts RF. Detection of influenza A and B in respiratory secretions with the polymerase chain response. Genome. 1992;1:263–8.

    CAS 
    Article 

    Google Scholar
     

  • 229.

    Atmar RL, Baxter BD, Dominguez EA, Taber LH. Comparability of reverse transcription-PCR with tissue tradition and different speedy diagnostic assays for detection of sort A influenza virus. J Clin Microbiol. 1996;34:2604–6.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 230.

    Spackman E, Senne DA, Myers TJ, Bulaga LL, Garber LP, Perdue ML, et al. Improvement of a real-time reverse transcriptase PCR assay for sort A influenza virus and the avian H5 and H7 hemagglutinin subtypes. J Clin Microbiol. 2002;40:3256–60.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 231.

    Payungporn S, Chutinimitkul S, Chaisingh A, Damrongwantanapokin S, Buranathai C, Amonsin A, et al. Single step multiplex real-time RT-PCR for H5N1 influenza A virus detection. J Virol Strategies. 2006;131:143–7.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 232.

    Panning M, Eickmann M, Landt O, Monazahian M, Olschläger S, Baumgarte S, et al. Detection of influenza A(H1N1)v virus by real-time RT-PCR. Eur Commun Dis Bull. 2009;14:19329. https://doi.org/10.2807/ese.14.36.19329-en.

    Article 

    Google Scholar
     

  • 233.

    Selvaraju SB, Selvarangan R. Analysis of three influenza A and B real-time reverse transcription-PCR assays and a brand new 2009 H1N1 assay for detection of influenza viruses. J Clin Microbiol. 2010;48:3870–5.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 234.

    Bustin SA. Quantification of mRNA utilizing real-time reverse transcription PCR (RT-PCR): traits and issues. J Mol Endocrinol. 2002;29:23–39.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 235.

    Yao Y, Chen X, Zhang X, Liu Q, Zhu J, Zhao W, et al. Fast detection of Influenza Virus subtypes primarily based on an built-in centrifugal disc. ACS Sens. 2020;5:1354–62. https://doi.org/10.1021/acssensors.9b02595.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 236.

    Imai M, Ninomiya A, Minekawa H, Notomi T, Ishizaki T, Tashiro M, et al. Improvement of H5-RT-LAMP (loop-mediated isothermal amplification) system for speedy prognosis of H5 avian influenza virus an infection. Vaccine. 2006;24:6679–82.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 237.

    Wang H, Cong F, Zeng F, Lian Y, Liu X, Luo M, et al. Improvement of an actual time reverse transcription loop-mediated isothermal amplification technique (RT-LAMP) for detection of a novel swine acute diarrhea syndrome coronavirus (SADS-CoV). J Virol Strategies. 2018;260:45–8.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 238.

    Kashir J, Yaqinuddin A. Loop mediated isothermal amplification (LAMP) assays as a speedy diagnostic for COVID-19. Med Hypotheses. 2020;141:109786.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 239.

    Lv X, Wang L, Zhang J, Zeng H, Chen X, Shi L, et al. Fast and delicate detection of VBNC Escherichia coli O157: H7 in beef by PMAxx and real-time LAMP. Meals Management. 2020;115:107292.

    CAS 
    Article 

    Google Scholar
     

  • 240.

    Shirato Ok, Semba S, El-Kafrawy SA, Hassan AM, Tolah AM, Takayama I, et al. Improvement of fluorescent reverse transcription loop-mediated isothermal amplification (RT-LAMP) utilizing quenching probes for the detection of the Center East respiratory syndrome coronavirus. J Virol Strategies. 2018;258:41–8.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 241.

    van Gemen B, van Beuningen R, Nabbe A, van Strijp D, Jurriaans S, Lens P, et al. A one-tube quantitative HIV-1 RNA NASBA nucleic acid amplification assay utilizing electrochemiluminescent (ECL) labelled probes. J Virol Strategies. 1994;49:157–67.

    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 242.

    Saag MS, Holodniy M, Kuritzkes DR, O’Brien WA, Coombs R, Poscher ME, et al. HIV viral load markers in scientific observe. Nat Med. 1996;2:625–9.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 243.

    Romano JW, Williams KG, Shurtliff RN, Ginocchio C, Kaplan M. NASBA know-how: Isothermal RNA amplification in qualitative and quantitative diagnostics. Immunol Investig. 1997;26:15–28. https://doi.org/10.3109/08820139709048912.

    CAS 
    Article 

    Google Scholar
     

  • 244.

    Keightley MC, Sillekens P, Schippers W, Rinaldo C, George Ok. Actual-time NASBA detection of SARS-associated coronavirus and comparability with real-time reverse transcription-PCR. J Med Virol. 2005;77:602–8. https://doi.org/10.1002/jmv.20498.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 245.

    Leone G, van Schijndel H, van Gemen B, Kramer FR, Schoen CD. Molecular beacon probes mixed with amplification by NASBA allow homogeneous, real-time detection of RNA. Nucleic Acids Res. 1998;26:2150–5.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 246.

    Kievits T, van Gemen B, van Strijp D, Schukkink R, Dircks M, Adriaanse H, et al. NASBATM isothermal enzymatic in vitro nucleic acid amplification optimized for the prognosis of HIV-1 an infection. J Virol Strategies. 1991;35:273–86.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 247.

    Deiman B, van Aarle P, Sillekens P. Traits and functions of Nucleic Acid Sequence-Primarily based Amplification (NASBA). Appl Biochem Biotechnol Half B Mol Biotechnol. 2002. https://doi.org/10.1385/MB:20:2:163.

    Article 

    Google Scholar
     

  • 248.

    Boyle DS, Lehman DA, Lillis L, Peterson D, Singhal M, Armes N, et al. Fast detection of HIV-1 proviral DNA for early toddler prognosis utilizing recombinase polymerase amplification. mBio. 2013;4:e00135.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 249.

    Gall A, Ferns B, Morris C, Watson S, Cotten M, Robinson M, et al. Common amplification, next-generation sequencing, and meeting of HIV-1 genomes. J Clin Microbiol. 2012;50:3838–44.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 250.

    Lillis L, Lehman D, Singhal MC, Cantera J, Singleton J, Labarre P, et al. Non-instrumented incubation of a recombinase polymerase amplification assay for the speedy and delicate detection of proviral HIV-1 DNA. PLoS ONE. 2014;9:e108189. https://doi.org/10.1371/journal.pone.0108189.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 251.

    de Oliveira F, Cappy P, Lemée V, Moisan A, Pronier C, Bocket L, et al. Detection of quite a few HIV-1/MO recombinants in France. AIDS. 2018;32:1289–99.

    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar
     

  • 252.

    Smithgall MC, Scherberkova I, Whittier S, Inexperienced DA. Comparability of cepheid Xpert Xpress and abbott ID now to Roche cobas for the speedy detection of SARS-CoV-2. J Clin Virol. 2020;128:104428.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 253.

    Basu A, Zinger T, Inglima Ok, Woo Ok-M, Atie O, Yurasits L, et al. Efficiency of Abbott ID NOW COVID-19 speedy nucleic acid amplification take a look at in nasopharyngeal swabs transported in viral media and dry nasal swabs, in a New York Metropolis tutorial establishment. J Clin Microbiol. 2020. https://doi.org/10.1101/2020.05.11.089896.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 254.

    Rhoads DD, Cherian SS, Roman Ok, Stempak LM, Schmotzer CL, Sadri N. Comparability of abbott id now, diasorin simplexa, and CDC fda emergency use authorization strategies for the detection of sars-cov-2 from nasopharyngeal and nasal swabs from people recognized with covid-19. J Clin Microbiol. 2020. https://doi.org/10.1148/radiol.2020200432.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 255.

    Mitchell SL, George KS. Analysis of the COVID19 ID NOW EUA assay. J Clin Virol. 2020;128:104429.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 256.

    Amano Y, Cheng Q. Detection of influenza virus: conventional approaches and improvement of biosensors. Anal Bioanal Chem. 2005. https://doi.org/10.1007/s00216-004-2927-0.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 257.

    Shen Z, Xiao Y, Kang L, Ma W, Shi L, Zhang L, et al. Genomic Range of extreme acute respiratory syndrome-coronavirus 2 in sufferers with coronavirus illness. Clin Infect Dis. 2020;71:713–20.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 258.

    Boon ACM, French AMF, Fleming DM, Zambon MC. Detection of influenza a subtypes in community-based surveillance. J Med Virol. 2001;65:163–70. https://doi.org/10.1002/jmv.2016.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 259.

    Bourgeois MA, Oaks JL. Laboratory Prognosis of Viral Infections. Equine Infectious Ailments: Second Version. Elsevier Inc.; 2013. p. 132-140.e2

  • 260.

    Stewart GL, Parkman PD, Hopps HE, Douglas RD, Hamilton JP, Meyer HM. Rubella-virus hemagglutination-inhibition take a look at. N Engl J Med. 1967;276:554–7. https://doi.org/10.1056/NEJM196703092761006.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 261.

    Meijer A, Bosman A, van de Kamp EEHM, Wilbrink B, van Beest Holle MDR, Koopmans M. Measurement of antibodies to avian influenza virus A(H7N7) in people by hemagglutination inhibition take a look at. J Virol Strategies. 2006;132:113–20.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 262.

    Hilleman MR, Werner JH. Affect of non-specific inhibitor on the diagnostic hemagglutination-inhibition take a look at for influenza. J Immunol. 1953;71:110–7.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 263.

    Black S, Nicolay U, Vesikari T, Knuf M, del Giudice G, Della Cioppa G, et al. Hemagglutination inhibition antibody titers as a correlate of safety for inactivated influenza Vaccines in youngsters. Pediatr Infect Dis J. 2011;30:1081–5.

    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 264.

    Yoon Ok-J, Janke BH, Swalla RW, Erickson G. Comparability of a business H1N1 enzyme-linked immunosorbent assay and hemagglutination inhibition take a look at in detecting serum antibody in opposition to swine influenza viruses. J Vet Diagn Make investments. 2004;16(3):197–201.

    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 265.

    Reina J, Padilla E, Alonso F, Ruiz de Gopegui ER, Munar M, Mari M. Analysis of a brand new dot blot enzyme immunoassay (directigen flu A+B) for simultaneous and differential detection of influenza A and B virus antigens from respiratory samples. J Clin Microbiol. 2002;40:3515–7.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 266.

    Cazacu AC, Greer J, Taherivand M, Demmler GJ. Comparability of lateral-flow immunoassay and enzyme immunoassay with viral tradition for speedy detection of influenza virus in nasal wash specimens from youngsters. J Clin Microbiol. 2003;41:2132–4.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 267.

    Quach C, Newby D, Daoust G, Rubin E, McDonald J. QuickVue influenza take a look at for speedy detection of influenza A and B viruses in a pediatric inhabitants. Clin Diagn Lab Immunol. 2002;9:925–6.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 268.

    Lee CY-P, Lin RTP, Renia L, Ng LFP. Serological approaches for COVID-19: epidemiologic perspective on surveillance and management. Entrance Immunol. 2020;11:879. https://doi.org/10.3389/fimmu.2020.00879/full.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 269.

    Zhang B, Zhou X, Zhu C, Feng F, Qiu Y, Feng J, et al. Immune phenotyping primarily based on neutrophil-to-lymphocyte ratio and IgG predicts illness severity and consequence for sufferers with COVID-19. medRxiv. 2020. https://doi.org/10.1101/2020.03.12.20035048v1.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 270.

    Lengthy QX, Deng HJ, Chen J, Hu JL, Liu BZ, Liao P, et al. Antibody responses to SARS-CoV-2 in COVID-19 sufferers: the attitude software of serological assessments in scientific observe. medRxiv. 2020. https://doi.org/10.1101/2020.03.18.20038018.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 271.

    Xiao AT, Gao C, Zhang S. Profile of particular antibodies to SARS-CoV-2: the primary report. J Infect. 2020;81:147–78.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 272.

    Ahmed SF, Quadeer AA, McKay MR. Preliminary identification of potential vaccine targets for the COVID-19 Coronavirus (SARS-CoV-2) Primarily based on SARS-CoV immunological research. Viruses. 2020;12:254.

    CAS 
    PubMed Central 
    Article 

    Google Scholar
     

  • 273.

    Okba NMA, Müller MA, Li W, Wang C, GeurtsvanKessel CH, Corman VM, et al. SARS-CoV-2 particular antibody responses in COVID-19 sufferers. medRxiv. 2020. https://doi.org/10.1101/2020.03.18.20038059.

    Article 

    Google Scholar
     

  • 274.

    Delchambre M, Gheysen D, Thinés D, Thiriart C, Jacobs E, Verdin E, et al. The GAG precursor of simian immunodeficiency virus assembles into virus-like particles. EMBO J. 1989;8:2653–60.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 275.

    Karacostas V, Nagashima Ok, Gonda MA, Moss B. Human immunodeficiency virus-like particles produced by a vaccinia virus expression vector. Proc Natl Acad Sci. 1989;86:8964–7.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 276.

    Gheysen D, Jacobs E, de Foresta F, Thiriart C, Francotte M, Thines D, et al. Meeting and launch of HIV-1 precursor Pr55gag virus-like particles from recombinant baculovirus-infected insect cells. Cell. 1989;59:103–12.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 277.

    Brangel P, Sobarzo A, Parolo C, Miller BS, Howes PD, Gelkop S, et al. A serological point-of-care take a look at for the detection of igg antibodies in opposition to Ebola virus in human survivors. ACS Nano. 2018;12:63–73.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 278.

    Le TT, Chang P, Benton DJ, McCauley JW, Iqbal M, Cass AEG. Twin recognition factor lateral circulation assay towards multiplex pressure particular influenza virus detection. Anal Chem. 2017;89:6781–6.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 279.

    Yan X, Zhong W, Tang A, Schielke EG, Dangle W, Nolan JP. Multiplexed circulation cytometric immunoassay for influenza virus detection and differentiation. Anal Chem. 2005;77:7673–8. https://doi.org/10.1021/ac0508797.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 280.

    Lee HH, Dineva MA, Chua YL, Ritchie AV, Ushiro-Lumb I, Wisniewski CA. Easy amplification-based assay: a nucleic acid-based point-of-care platform for HIV-1 testing. J Infect Dis. 2010;201:S65-72. https://doi.org/10.1086/650385.

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 281.

    He Y, Zhang S, Zhang X, Baloda M, Gurung AS, Xu H, et al. Ultrasensitive nucleic acid biosensor primarily based on enzyme-gold nanoparticle twin label and lateral circulation strip biosensor. Biosens Bioelectron. 2011;26:2018–24.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • 282.

    Tang S, Zhao J, Storhoff JJ, Norris PJ, Little RF, Yarchoan R, et al. Nanoparticle-based biobarcode amplification assay (BCA) for delicate and early detection of human immunodeficiency sort 1 capsid (p24) antigen. JAIDS J Acquir Immune Defic Syndr. 2007;46:231–7.

    PubMed 
    Article 

    Google Scholar
     

  • 283.

    Rohrman BA, Leautaud V, Molyneux E, Richards-Kortum RR. A lateral circulation assay for quantitative detection of amplified HIV-1 RNA. PLoS ONE. 2012;7:e45611. https://doi.org/10.1371/journal.pone.0045611.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 284.

    Clark MF, Lister RM, Bar-Joseph M. ELISA strategies. Strategies Enzymol. 1986;118:742–66.

    CAS 
    Article 

    Google Scholar
     

  • 285.

    Luo Q, Huang H, Zou W, Dan H, Guo X, Zhang A, et al. An oblique sandwich ELISA for the detection of avian influenza H5 subtype viruses utilizing anti-hemagglutinin protein monoclonal antibody. Vet Microbiol. 2009;137:24–30.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 286.

    Zhu M, Gong X, Hu Y, Ou W, Wan Y. Streptavidin-biotin-based directional double Nanobody sandwich ELISA for scientific speedy and delicate detection of influenza H5N1. J Transl Med. 2014;12:1–10. https://doi.org/10.1186/s12967-014-0352-5.

    CAS 
    Article 

    Google Scholar
     

  • 287.

    Watcharatanyatip Ok, Boonmoh S, Chaichoun Ok, Songserm T, Woratanti M, Dharakul T. Multispecies detection of antibodies to influenza A viruses by a double-antigen sandwich ELISA. J Virol Strategies. 2010;163:238–43.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 288.

    Velumani S, Du Q, Fenner BJ, Prabakaran M, Wee LC, Nuo LY, et al. Improvement of an antigen-capture ELISA for detection of H7 subtype avian influenza from experimentally contaminated chickens. J Virol Strategies. 2008;147:219–25.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 289.

    Holmström P, Syrjänen S, Laine P, Valle S-L, Suni J. HIV antibodies in complete saliva detected by ELISA and western blot assays. Jo Med Virol. 1990;30:245–8. https://doi.org/10.1002/jmv.1890300403.

    Article 

    Google Scholar
     

  • 290.

    de La Rica R, Stevens MM. Plasmonic ELISA for the ultrasensitive detection of illness biomarkers with the bare eye. Nat Nanotechnol. 2012;7:821–4.

    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar
     

  • 291.

    Guo L, Ren L, Yang S, Xiao M, Chang D, Yang F, et al. Profiling early humoral response to diagnose novel coronavirus illness (COVID-19). Clin Infect Dis. 2020;71:778–85. https://doi.org/10.1093/cid/ciaa310.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 292.

    Woo PCY, Lau SKP, Wong BHL, Tsoi HW, Fung AMY, Kao RYT, et al. Differential sensitivities of extreme acute respiratory syndrome (SARS) coronavirus spike polypeptide enzyme-linked immunosorbent assay (ELISA) and SARS coronavirus nucleocapsid protein ELISA for serodiagnosis of SARS coronavirus pneumonia. J Clin Microbiol. 2005;43:3054–8. https://doi.org/10.1128/JCM.43.7.3054-3058.2005.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 293.

    Zhong L, Chuan J, Gong B, Shuai P, Zhou Y, Zhang Y, et al. Detection of serum IgM and IgG for COVID-19 prognosis. Sci China Life Sci. 2020. https://doi.org/10.1007/s11427-020-1688-9.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 294.

    Lengthy QX, Deng HJ, Chen J, Hu JL, Liu BZ, Liao P, et al. Antibody responses to SARS-CoV-2 in COVID-19 sufferers: the attitude software of serological assessments in scientific observe. medRxiv. 2020. https://doi.org/10.1101/2020.03.18.20038018.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 295.

    Sapkal G, Shete-Aich A, Jain R, Yadav P, Sarkale P, Lakra R, et al. Improvement of indigenous IgG ELISA for the detection of anti-SARS-CoV-2 IgG. Indian J Med Res. 2020;151:444–9.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 296.

    Beavis KG, Matushek SM, Abeleda APF, Bethel C, Hunt C, Gillen S, et al. Analysis of the EUROIMMUN Anti-SARS-CoV-2 ELISA Assay for detection of IgA and IgG antibodies. J Clin Virol. 2020;129:104468.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 297.

    Oh S, Kim J, Tran VT, Lee DK, Ahmed SR, Hong JC, et al. Magnetic nanozyme-linked immunosorbent assay for ultrasensitive Influenza A virus detection. ACS Appl Mater Interfaces. 2018;10:12534–43. https://doi.org/10.1021/acsami.8b02735.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 298.

    Lu PH, Ma YD, Fu CY, Lee G. A structure-free digital microfluidic platform for detection of influenza a virus by utilizing magnetic beads and electromagnetic forces. Lab Chip. 2020;20:789–97.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 299.

    Su D, Wu Ok, Krishna VD, Klein T, Liu J, Feng Y, et al. Detection of Influenza a Virus in swine nasal swab samples with a wash-free magnetic bioassay and a handheld large magnetoresistance sensing system. Entrance Microbiol. 2019;10:1077. https://doi.org/10.3389/fmicb.2019.01077/full.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 300.

    Wu Ok, Liu J, Saha R, Su D, Krishna VD, Cheeran MCJ, et al. Magnetic particle spectroscopy for detection of Influenza A virus subtype H1N1. ACS Appl Mater Interfaces. 2020;12:13686–97. https://doi.org/10.1021/acsami.0c00815.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 301.

    Wu Z, Zeng T, Guo WJ, Bai YY, Pang DW, Zhang ZL. Digital single virus immunoassay for ultrasensitive multiplex Avian Influenza Virus detection primarily based on fluorescent magnetic multifunctional nanospheres. ACS Appl Mater Interfaces. 2019;11:5762–70.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 302.

    Wang S, Ai Z, Zhang Z, Tang M, Zhang N, Liu F, et al. Simultaneous and automatic detection of influenza A virus hemagglutinin H7 and H9 primarily based on magnetism and measurement mediated microfluidic chip. Sens Actuators B Chem. 2020;308:127675.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 303.

    Tian S, Yang H, Zhang Z, Du M, Mao G, Ji X, et al. A digital quantification technique for the detection of biomarkers on a microfluidic array chip. Sens Actuators B Chem. 2019;298:126851.

    CAS 
    Article 

    Google Scholar
     

  • 304.

    Virzonis D, Vanagas G, Ramanaviciene A, Makaraviciute A, Barauskas D, Ramanavicius A, et al. Resonant gravimetric immunosensing primarily based on capacitive micromachined ultrasound transducers. Microchimica Acta. 2014;181:1749–57.

    CAS 
    Article 

    Google Scholar
     

  • 305.

    Makaraviciute A, Ruzgas T, Ramanavicius A, Ramanaviciene A. Antibody fragment immobilization on planar gold and gold nanoparticle modified quartz crystal microbalance with dissipation sensor surfaces for immunosensor functions. Anal Strategies. 2014;6:2134–40.

    CAS 
    Article 

    Google Scholar
     

  • 306.

    Ratautaite V, Plausinaitis D, Baleviciute I, Mikoliunaite L, Ramanaviciene A, Ramanavicius A. Characterization of caffeine-imprinted polypyrrole by a quartz crystal microbalance and electrochemical impedance spectroscopy. Sens Actuators B Chem. 2015;212:63–71.

    CAS 
    Article 

    Google Scholar
     

  • 307.

    Viter R, Savchuk M, Starodub N, Balevicius Z, Tumenas S, Ramanaviciene A, et al. Photoluminescence immunosensor primarily based on bovine leukemia virus proteins immobilized on the ZnO nanorods. Sens Actuators B Chem. 2019;285:601–6.

    CAS 
    Article 

    Google Scholar
     

  • 308.

    Viter R, Savchuk M, Iatsunskyi I, Pietralik Z, Starodub N, Shpyrka N, et al. Analytical, thermodynamical and kinetic traits of photoluminescence immunosensor for the dedication of Ochratoxin A. Biosens Bioelectron. 2018;99:237–43.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 309.

    Kausaite-Minkstimiene A, Ramanaviciene A, Ramanavicius A. Floor plasmon resonance biosensor for direct detection of antibodies in opposition to human development hormone. Analyst. 2009;134:2051–7.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 310.

    Kausaite-Minkstimiene A, Ramanaviciene A, Kirlyte J, Ramanavicius A. Comparative examine of random and oriented antibody immobilization strategies on the binding capability of immunosensor. Anal Chem. 2010;82:6401–8.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 311.

    Kausaite-Minkstimiene A, Ramanavicius A, Ruksnaite J, Ramanaviciene A. A floor plasmon resonance immunosensor for human development hormone primarily based on fragmented antibodies. Anal Strategies. 2013;5:4757–63.

    CAS 
    Article 

    Google Scholar
     

  • 312.

    Morkvenaite-Vilkonciene I, Ramanaviciene A, Kisieliute A, Bucinskas V, Ramanavicius A. Scanning electrochemical microscopy within the improvement of enzymatic sensors and immunosensors. Biosens Bioelectron. 2019;141:111411.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 313.

    Ramanavicius A, Oztekin Y, Ramanaviciene A. Electrochemical formation of polypyrrole-based layer for immunosensor design. Sens Actuators B Chem. 2014;197:237–43.

    CAS 
    Article 

    Google Scholar
     

  • 314.

    Ramanavicius A, Finkelsteinas A, Cesiulis H, Ramanaviciene A. Electrochemical impedance spectroscopy of polypyrrole primarily based electrochemical immunosensor. Bioelectrochemistry. 2010;79:11–6.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 315.

    Ramanavicius A, Ryskevic N, Oztekin Y, Kausaite-Minkstimiene A, Jursenas S, Baniukevic J, et al. Immunosensor primarily based on fluorescence quenching matrix of the conducting polymer polypyrrole. Anal Bioanal Chem. 2010;398:3105–13. https://doi.org/10.1007/s00216-010-4265-8.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 316.

    Ramanavicius A, Kurilcik N, Jursenas S, Finkelsteinas A, Ramanaviciene A. Conducting polymer primarily based fluorescence quenching as a brand new strategy to extend the selectivity of immunosensors. Biosens Bioelectron. 2007;23:499–505.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 317.

    Ramanaviciene A, German N, Kausaite-Minkstimiene A, Voronovic J, Kirlyte J, Ramanavicius A. Comparative examine of floor plasmon resonance, electrochemical and electroassisted chemiluminescence strategies primarily based immunosensor for the dedication of antibodies in opposition to human development hormone. Biosens Bioelectron. 2012;36:48–55.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 318.

    Plikusiene I, Maciulis V, Graniel O, Bechelany M, Balevicius S, Vertelis V, et al. Whole inside reflection ellipsometry for kinetics-based evaluation of bovine serum albumin immobilization on ZnO nanowires. J Mater Chem C. 2021;9:1345–52.

    CAS 
    Article 

    Google Scholar
     

  • 319.

    Plikusiene I, Balevicius Z, Ramanaviciene A, Talbot J, Mickiene G, Balevicius S, et al. Analysis of affinity sensor response kinetics in the direction of dimeric ligands linked with spacers of various rigidity: immobilized recombinant granulocyte colony-stimulating issue primarily based artificial receptor binding with genetically engineered dimeric analyte derivatives. Biosens Bioelectron. 2020;156:112112.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 320.

    Balevicius Z, Paulauskas A, Plikusiene I, Mikoliunaite L, Bechelany M, Popov A, et al. In the direction of the applying of Al2O3/ZnO nanolaminates in immunosensors: complete inside reflection spectroscopic ellipsometry primarily based analysis of BSA immobilization. J Mater Chem C. 2018;6:8778–83.

    CAS 
    Article 

    Google Scholar
     

  • 321.

    Balevicius Z, Baleviciute I, Tumenas S, Tamosaitis L, Stirke A, Makaraviciute A, et al. In situ examine of ligand-receptor interplay by complete inside reflection ellipsometry. Skinny Stable Movies. 2014;517:744–8.

    Article 
    CAS 

    Google Scholar
     

  • 322.

    Baleviciute I, Balevicius Z, Makaraviciute A, Ramanaviciene A, Ramanavicius A. Examine of antibody/antigen binding kinetics by complete inside reflection ellipsometry. Biosens Bioelectron. 2013;39:170–6.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 323.

    Balevicius Z, Ramanaviciene A, Baleviciute I, Makaraviciute A, Mikoliunaite L, Ramanavicius A. Analysis of intact- and fragmented-antibody primarily based immunosensors by complete inside reflection ellipsometry. Sens Actuators B Chem. 2011;160:555–62.

    CAS 
    Article 

    Google Scholar
     

  • 324.

    Makaraviciute A, Ramanavicius A, Ramanaviciene A. Improvement of a reusable protein G primarily based SPR immunosensor for direct human development hormone detection in actual samples. Anal Strategies. 2015;7:9875–84.

    CAS 
    Article 

    Google Scholar
     

  • 325.

    Baniukevic J, Kirlyte J, Ramanavicius A, Ramanaviciene A. Utility of oriented and random antibody immobilization strategies in immunosensor design. Sens Actuators B: Chem. 2013;189:217–23.

    CAS 
    Article 

    Google Scholar
     

  • 326.

    Ramanaviciene A, Virzonis D, Vanagas G, Ramanavicius A. Capacitive micromachined ultrasound transducer (cMUT) for immunosensor design. Analyst. 2010;135:1531–4.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 327.

    Raziq A, Kidakova A, Boroznjak R, Reut J, Öpik A, Syritski V. Improvement of a conveyable MIP-based electrochemical sensor for detection of SARS-CoV-2 antigen. Biosens Bioelectron. 2021;178:113029.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 328.

    Ramanavicius S, Ramanavicius A. Conducting polymers within the design of biosensors and biofuel cells. Polymers. 2020;13:49.

    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • 329.

    Gronowski AM. Who or what’s SHERLOCK? Electron J Int Fed Clin Chem Lab Med. 2018;29:201–4.

    CAS 

    Google Scholar
     

  • 330.

    Brouns SJJ, Jore MM, Lundgren M, Westra ER, Slijkhuis RJH, Snijders APL, et al. Small CRISPR RNAs information antiviral protection in prokaryotes. Science. 2008;321:960–4.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 331.

    McGinn J, Marraffini LA. Molecular mechanisms of CRISPR–Cas spacer acquisition. Nat Rev Microbiol. 2019;17:7–12.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 332.

    Zhang F, Wen Y, Guo X. CRISPR/Cas9 for genome modifying: progress, implications and challenges. Hum Mol Genet. 2014;23:R40-6.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 333.

    Gasiunas G, Barrangou R, Horvath P, Siksnys V. Cas9-crRNA ribonucleoprotein advanced mediates particular DNA cleavage for adaptive immunity in micro organism. Proc Natl Acad Sci USA. 2012;109:E2579-86. https://doi.org/10.1073/pnas.1208507109.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 334.

    Sapranauskas R, Gasiunas G, Fremaux C, Barrangou R, Horvath P, Siksnys V. The Streptococcus thermophilus CRISPR/Cas system gives immunity in Escherichia coli. Nucleic Acids Res. 2011;39:9275–82.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 335.

    Sasnauskas G, Siksnys V. CRISPR adaptation from a structural perspective. Curr Opin Struct Biol. 2020;65:17–25.

    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar
     

  • 336.

    Gasiunas G, Sinkunas T, Siksnys V. Molecular mechanisms of CRISPR-mediated microbial immunity. Cell Mol Life Sci. 2014. https://doi.org/10.1007/s00018-013-1438-6.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 337.

    Wilkinson M, Drabavicius G, Silanskas A, Gasiunas G, Siksnys V, Wigley DB. Construction of the DNA-bound spacer seize advanced of a sort ii CRISPR-Cas system. Mol Cell Cell Press. 2019;75:90-101.e5.

    CAS 
    Article 

    Google Scholar
     

  • 338.

    Müller M, Lee CM, Gasiunas G, Davis TH, Cradick TJ, Siksnys V, et al. Streptococcus thermophilus CRISPR-Cas9 programs allow particular modifying of the human genome. Mol Ther. 2016;24:636–44.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • 339.

    Glemzaite M, Balciunaite E, Karvelis T, Gasiunas G, Grusyte M, Alzbutas G, et al. Focused gene modifying by transfection of in vitro reconstituted Streptococcus thermophilus cas9 nuclease advanced. RNA Biol. 2015;12:1–4. https://doi.org/10.1080/15476286.2015.1017209.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 340.

    Gasiunas G, Younger JK, Karvelis T, Kazlauskas D, Urbaitis T, Jasnauskaite M, et al. A listing of biochemically various CRISPR-Cas9 orthologs. Nat Commun. 2020;11:5512.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 341.

    Makarova KS, Wolf YI, Iranzo J, Shmakov SA, Alkhnbashi OS, Brouns SJJ, et al. Evolutionary classification of CRISPR–Cas programs: a burst of sophistication 2 and derived variants. Nat Rev Microbiol. 2020;18:67–83.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 342.

    Gootenberg JS, Abudayyeh OO, Kellner MJ, Joung J, Collins JJ, Zhang F. Multiplexed and transportable nucleic acid detection platform with Cas13, Cas12a, and Csm6. Science. 2018;360(6387):439–44.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 343.

    Gootenberg JS, Abudayyeh OO, Lee JW, Essletzbichler P, Dy AJ, Joung J, et al. Nucleic acid detection with CRISPR-Cas13a/C2c2. Science. 2017;356:438–42.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 344.

    Chaijarasphong T, Thammachai T, Itsathitphaisarn O, Sritunyalucksana Ok, Suebsing R. Potential software of CRISPR-Cas12a fluorescence assay coupled with speedy nucleic acid amplification for detection of white spot syndrome virus in shrimp. Aquaculture. 2019;512:734340.

    CAS 
    Article 

    Google Scholar
     

  • 345.

    Khan H, Khan A, Liu Y, Wang S, Bibi S, Xu H, et al. CRISPR-Cas13a mediated nanosystem for attomolar detection of canine parvovirus sort 2. Chin Chem Lett. 2019;30:2201–4.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 346.

    Schindele P, Wolter F, Puchta H. Reworking plant biology and breeding with CRISPR/Cas9, Cas12 and Cas13. FEBS Lett. 2018;592:1954–67. https://doi.org/10.1002/1873-3468.13073percent4010.1002/%28ISSNpercent291873-3468.opinions.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 347.

    Yan F, Wang W, Zhang J. CRISPR-Cas12 and Cas13: the lesser identified siblings of CRISPR-Cas9. Cell Biol Toxicol. 2019. https://doi.org/10.1007/s10565-019-09489-1.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 348.

    Kellner MJ, Koob JG, Gootenberg JS, Abudayyeh OO, Zhang F. SHERLOCK: nucleic acid detection with CRISPR nucleases. Nat Protoc. 2019;14:2986–3012.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 349.

    Qin P, Park M, Alfson KJ, Tamhankar M, Carrion R, Patterson JL, et al. Fast and absolutely microfluidic Ebola virus detection with CRISPR-Cas13a. ACS Sens. 2019;4:1048–54. https://doi.org/10.1021/acssensors.9b00239.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 350.

    Kim D, Lee JY, Yang JS, Kim JW, Kim VN, Chang H. The structure of SARS-CoV-2 transcriptome. Cell. 2020;181:914-921.e10.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 351.

    Joung J, Ladha A, Saito M, Segel M, Bruneau R, Huang MLW, et al. Level-of-care testing for COVID-19 utilizing SHERLOCK diagnostics. medRxiv. 2020. https://doi.org/10.1101/2020.05.04.20091231.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 352.

    Patchsung M, Jantarug Ok, Pattama A, Aphicho Ok, Suraritdechachai S, Meesawat P, et al. Medical validation of a Cas13-based assay for the detection of SARS-CoV-2 RNA. Nat Biomedi Eng. 2020;4:1140–9. https://doi.org/10.1038/s41551-020-00603-x.

    CAS 
    Article 

    Google Scholar
     

  • 353.

    Guo L, Solar X, Wang X, Liang C, Jiang H, Gao Q, et al. SARS-CoV-2 detection with CRISPR diagnostics. Cell Discov. 2020;6:1–4.

    Article 
    CAS 

    Google Scholar
     

  • 354.

    Metsky HC, Freije CA, Kosoko-Thoroddsen TSF, Sabeti PC, Myhrvold C. CRISPR-based surveillance for COVID-19 utilizing genomically-comprehensive machine studying design. bioRxiv. 2020. https://doi.org/10.1101/2020.02.26.967026v2.

    Article 

    Google Scholar
     

  • 355.

    Curti L, Pereyra-Bonnet F, Gimenez CA. An ultrasensitive, speedy, and transportable coronavirus SARS-CoV-2 sequence detection technique primarily based on CRISPR-Cas12. bioRxiv. 2020. https://doi.org/10.1101/2020.02.29.971127.

    Article 

    Google Scholar
     

  • 356.

    Myhrvold C, Freije CA, Gootenberg JS, Abudayyeh OO, Metsky HC, Durbin AF, et al. Area-deployable viral diagnostics utilizing CRISPR-Cas13. Science. 2018;360:444–8.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 357.

    Chen JS, Ma E, Harrington LB, da Costa M, Tian X, Palefsky JM, et al. CRISPR-Cas12a goal binding unleashes indiscriminate single-stranded DNase exercise. Science. 2018;360:436–9.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 358.

    Teng F, Guo L, Cui T, Wang XG, Xu Ok, Gao Q, et al. CDetection: CRISPR-Cas12b-based DNA detection with sub-attomolar sensitivity and single-base specificity. Genome Biol. 2019;20:132. https://doi.org/10.1186/s13059-019-1742-z.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 359.

    Chen JS, Ma E, Harrington LB, da Costa M, Tian X, Palefsky JM, et al. CRISPR-Cas12a goal binding unleashes indiscriminate single-stranded DNase exercise. Science. 2018;360(6387):436–9.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 360.

    Burstein D, Harrington LB, Strutt SC, Probst AJ, Anantharaman Ok, Thomas BC, et al. New CRISPR-Cas programs from uncultivated microbes. Nature. 2017;542:237–41.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 361.

    Harrington LB, Burstein D, Chen JS, Paez-Espino D, Ma E, Witte IP, et al. Programmed DNA destruction by miniature CRISPR-Cas14 enzymes. Science. 2018;362:839–42.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 362.

    Xiang X, Qian Ok, Zhang Z, Lin F, Xie Y, Liu Y, et al. CRISPR-cas programs primarily based molecular diagnostic device for infectious illnesses and rising 2019 novel coronavirus (COVID-19) pneumonia. J Drug Goal. 2020;28:727–31.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 363.

    Tao D, Liu J, Nie X, Xu B, Tran-Thi TN, Niu L, et al. Utility of CRISPR-Cas12a enhanced fluorescence assay coupled with nucleic acid amplification for the delicate detection of African Swine fever virus. ACS Synth Biol. 2020;9:2339–50. https://doi.org/10.1021/acssynbio.0c00057.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar